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The Mordell-Lang conjecture is a generalization of the well-known Faltings’s
theorem on finiteness of rational points on curves of genus at least 2. The
statement is roughlt stated as follows:

Let K be a number field and E an abelian variety over K. The
intersection of an algebraic subvariety X with a subgroup of finite
rank Γ is contained in a finite union of cosets (of abelian subvarieties
of E) contained in X.

Thus the points of X ∩ Γ are captured by finitely many translates of abelian
subvarieties. It implies Faltings’s theorem using Jacobian and the Abel-Jacobi
map. The purpose of this post is try to explain Anand Pillay’s proof Mordell-
Lang for function fields in characteristic zero. The primary reference is his 2004
paper Mordell–Lang conjecture for function fields in characteristic zero, revisited.

The formal statement is as follows:

Let K/k be algebraically closed fields of characteristic zero and A
an abelian variety over K. Let X be an irreducible subvariety of
A over K and Γ a finite rank subgroup of A(K) (i.e. Γ ⊗Z Q is a
finite-dimensional Q-vector space). Suppose X ∩ Γ is Zariski dense
in X and X has trivial stablizer in A, then up to a translate X is
contained in an abelian subvariety of A that descends to an abelian
variety defined over k.

This is firstly proved by Buium in 1992. The positive characteristic case is
first done by Hrushovski using model-theoretic method (Zilber’s trichotomy for
Zariski geometry). Note that the conclusion here is stronger than the one in
Hrushovski’s paper, since we assume in addition that X has trivial stablizer.

A result from complex geometry using deformation-theoretic method

To motivate Pillay’s proof we mention the following amazing result due to Ueno:

If A is a complex torus and X an analytic subvariety of A with trivial
stabilizer, then X is an algebraic variety.

This feels like a Chow’s theorem for complex tori: Even though complex tori are
not algebraic in general, their ‘generic’ analytic subvarieties are. The proof of
these results illustrate the power of taking derivative in diophantine questions
over function fields. (E.g. Fermat’s last theorem for function fields is a triviality
simply by differentiating the equation f(t)n + g(t)n = h(t)n.) In fact, I believe
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the Gauss-Manin connection (a way to differentiate cohomology classes) plays
a crucial role in all approaches to Mordell-type conjectures, in one way or
another. As an example, a recent approach to Faltings’s theorem by Lawrence-
Venkatesh uses the p-adic period mapping, whose construction boils down to
the Gauss-Manin connection.

Going back to Ueno’s result, it is an easy corollary of the following infinitesimal
version of Chow’s theorem by Campana.

Let Z be an analytic space, (Xs)s∈S an analytic family of analytic
compact cycles in Z parametrized by a compact analytic space S and
X ⊆ S × Z denote the graph of (Xs)s∈S . There is a bimeromorphic
(birational?) embedding of X into Grr(Dp(Z)) for some p, r ≥ 0 that
is compatible with projection to Z. Here Dp(Z) denotes the sheaf of
differential operators of order ≤ p and Grr(Dp(Z)) is the total space
of the Grassmanian sheaf of r-dimensional subspaces of Dp(Z).

This thoerem implies that a stablizer-free analytic subvariety X ⊂ T is Moishezon
(having enough meromorphic functions), and being a subvariety of the complex
torus T it also Kähler, hence projective by Moishezon’s theorem.

This suggests deformation-theoretic method (combined with some finiteness
assumption such as compactness) can be useful in showing algebracity result,
once we are in a setting that allows us to take derivative. One natural setting
for doing this is differential algebraic groups.

Preliminaries on differential algebra

We first define what an algebraic D-group is and this requires the language of
differential algebra. A good reference is this paper by Pillay. Let K be a field
(characteristic zero) with a derivation ∂ and k the field of constant (elements
killed by ∂). Note that WLOG, we can extend scalar to make K differentially
closed (this means that any finite system of differential polynomial equations
and inequations over K that has a solution in some extension of K already
has a solution over K, analogous to being algebraically closed). An algebraic
D-variety (defined by Buium) is an irreducible variety X over K equipped with
a derivation ∂X on the structure sheaf of X extending ∂ (so it allows us to
differentiate sections in $X(K)). If G is an algebraic group over K and ∂G is
compatible with the multiplication and inversion of G, then G is an algebraic
D-group.

We define the ∂-twisted tangent bundle τ(X) as follows: If X is locally cut out
by P1(X1, ...Xn) = 0, ...Pr(X1, ...Xn) = 0 over K, then τ(X) is locally cut out
by these equations together with

n∑
i=1

(
∂Pj

∂Xi

)
vi + P ∂

j = 0

for j = 1, ..., r where v1, ...vn are n new variables and P ∂
j denotes the polynomial
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obtained by differentiating the coefficients of Pj with ∂. Note that if X is defined
over k, the coefficients of Pj are in k and thus annhilated by ∂, in which case
τ(X) is the tangent bundle of X.

Note that if G is an algebraic D-group, there is a natural algebraic D-group
structure on τ(G) given by sending

(x, u) ∗τ(G) (y, v) = (x ∗G y, d(x,y) ∗G (u, v)).

We also have a natural algebraic D-group homomorphism p : τ(G) → G given
by projection.

Pillay actually define algebraic D-group in a more explicit way, by replacing the
derivation ∂G with the equivalent datum of a section s : G → τ(G) which is also
a homomorphism over K; it gives a K-rational splitting of τ(G) as a semidirect
product of G and Lie(G), the Lie algebra of G thought of as a K-variety. This
also amounts to the datum of a K-rational h : τ(G) → Lie(G) that is a left
inverse to p and a crossed homomorphism, i.e. we have h(xy) = h(x) + xh(y)x−1

for x, y ∈ τ(G). We call X ⊂ G a D-subvariety if s maps X to τ(X).

Arguably the most important definition is the following: giving an algebraic
D-variety (X, s), we define (X, s)# (or X# if s is understood) to be

(X, s)# := {x ∈ X(K) : s(x) = ∂(x)}.

If s is the zero section and G is defined over k, this is precisely G(k), which is a
much smaller object than G(K). (Pillay says it is a finite-dimensional differential
algebraic group, I haven’t looked into the definition of it but it presumably has
something to do with some model-theoretic dimension?) On the other hand,
G(k) is Zariski-dense in G(K) (this reminds me of the fact that the Q-points
in an algebraic variety X ⊂ Cn defined over Q is Zariski dense, for solution see
this mathoverflow post).

Main theorem

Now we can state and prove an analogous algebracity result in this differential
algebraic setting:

Suppose that (G, s) is an algebraic D-group, X is a D-subvariety of
(G, s) with trivial stablizer. Assume also that e ∈ X and X generates
G. Then (G, s) comes from k, i.e. there exists an algebraic group G0
defined over k such that (G, s) is isomorphic to (G0, s0) where s0 is
the zero section.

The conclusion is commonly called (strongly?) isotrivial in deformation theory
literature.

Proof sketch: The p-jet jp(G)e of G at e ∈ G is the dual space of m/mp+1 where
m is the maximal ideal of the local ring of G at e. This is a finite dimensional
K-vector space. Similarly, we define jp(Y )e for any subvariety of G containing e.
The general principle is again
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If Y is a member of an algebraic family of subvarieties, all passing
through e,then Y is determined (in this family) by jp(Y )e ⊆ jp(G)e

for sufficiently large p.

In this case this is almost immediate since the family is algebraic to begin with.
Since X has trivial stablizer, for t1, t2 ∈ G, we have t−1

1 X = t−1
2 X implies

t1 = t2. If t ∈ X, t−1X contains e. Thus by the general prinicple, for sufficiently
large p, the map taking t ∈ X 7→ jp(t−1X)e gives a birational embedding h of X
into Grr(jp(G)e). The dual space V = m/mp+1 is equipped with a connection
DV over F , which in turn induces one on jp(G)e = V ∗. Since K is differentially
closed, we have a fundamental system of solutions of the equation DV ∗ = 0, that
is, there exists a tuple d = (d1, ..., dn) of elements of V ∗ which is simultaneously
an K-basis of V ∗ and a k-basis of the solution space (V ∗)∂ . (This certainly
reminds me of some constructions in Riemann-Hilbert correspondence and p-adic
Hodge theory.)

Now suppose t ∈ X#, then t−1X is a D-variety of G, and essentially the same
argument as above applies and shows that Wt = jp(t−1X)e, a ∂-submodule of
V ∗, admits a finite F -basis that is also a k-basis for the solution space W ∂

t .
Thus Wt is a k-rational point of Grr(Kn) and we have obtained a birational
isomorphism h of X with a subvariety Y of Grr(Kn) such that for generic
t ∈ X#, h(t) is rational over k. Note that, as X# is Zariski-dense in X, Y is
defined over k and it is not hard to take it from here.

To apply this theorem to Mordell-Lang it remains to produce a finite-dimensional
differential algebraic subgroup of A(F ) containing Γ. This is done by Buium in
the paper mentioned above. More precisely, his construction gives the following:

There is a connected commutative algebraic D-group (G, s) and a
surjective homomorphism (of algebraic groups) π : G → A such that:

1. L = ker(π) is unipotent (and is thus the unipotent radical of
G,as A is abelian);

2. π|G# is injective;

3. Γ ⊂ π(G#).

Using this it is not hard to finish the proof. Maybe I will come back and revisit
his construction, as it seems rather magical!
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