When the Discrete Topology Does Not Imply the Discrete Metric

written by functorcat on Functor Network original link: https://functor.network/user/3107/entry/1206

Metric Space

You may be familiar with the **discrete metric** on an arbitrary set X. The discrete metric makes every subset of X an open set. If we let \mathcal{T}_X denote the topology induced by the discrete metric on X, then

$$\mathcal{T}_X = \{A \mid A \subseteq X\}.$$

Now, is the converse true?

Recall that the discrete metric function e on $X \times X$ is defined as:

$$e(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1 & \text{if } x \neq y. \end{cases}$$

So, we can say that every Cauchy sequence in (X, e) is convergent in X. Suppose we have a metric d on X such that the topology induced by d is

$$\mathcal{T}_X = \{A \mid A \subseteq X\}.$$

Does this imply that d is the discrete metric? No.

Counterexample

Define a metric $d \colon \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ as:

$$d(m,n) = \left| \frac{1}{n} - \frac{1}{m} \right|,$$

where $|\cdot|$ denotes the usual Euclidean metric on \mathbb{R} .

• Every subset of \mathbb{N} is open in this metric space. Thus,

$$\mathcal{T}_{\mathbb{N}} = \{ A \mid A \subseteq \mathbb{N} \}.$$

• However, this space is **not complete**. Consider the sequence $x_n = n$. It is Cauchy but **not** convergent in (\mathbb{N}, d) .

This counterexample shows that even if the topology induced by a metric is discrete topology, the metric itself need not be the discrete metric.

Moreover, if you are familiar with the concept of **equivalent metrics**, observe that (\mathbb{N}, d) is homeomorphic to the metric space $(\mathbb{N}, |\cdot|)$. Hence, this example illustrates that **completeness is not preserved under homeomorphism**.