Representations of Symmetric Groups:
Part 1
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Introduction

In this post, we aim to glean as much as we cam about the characters of the
symmetric groups (today we’ll be focusing on S5 and S;) using simple
properties of characters.

First up, Ss!

The most natural representation of G = S5 (in fact, this hardly seems like a
reprsentation at all!) would to be let p : S3 — GL(V) be such that it sends
g € Ss3 to its 3 by 3 permutation matrix and V' = R3. For instance,

001
p(123) = [1 0 0| € GL(R?),
010
and
100
p(23) = {0 1 0| € GL(R?).
001

Unfortunately, this is not an irreducible one: all the p(g)’s leave (a, a,a) € R?
for areal a alone. Hence, W := span{(1, 1, 1)} is an invariant subspace of V'
(an invariant line). The projection operator p : V' — W onto W is

T1+ To + T3

p<x17x27x3) = (17171>7

for all (xy, 15, 23) € R3, and

W' := ker(p) = span{(1,0,—1),(0,1,—1)} = {(x,y, —x — y) : x,y € R}.

That is, W’ is the orthogonal complement of 1 under the dot product. By
definition, V =W @ W".
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According to Maschke’s theorem (or Theorem 1 from Serre’s 1977 book), W' is
also an invariant subspace. We can do a quick spot check:

p(9)((—z —y,z,y)) = (—z — y,z,y) for g = (132). Setting

(—x —y,z,y) = a(1,0,—1) 4+ 5(0,1,—1), we see that « = —z — y and § = =z,
works and so (—z — y,z,y) € W', as we expect.

The subrepresentation (p|w, W) is thus just the trivial representation: There just
isn’t much freedom offered by a good ’ol line. However, the degree 2
reprsentation (p|y-, W') is more interesting. Notice that dimW’ = 2 so GL(WW")
can be indentified with 2 by 2 matrices. Fixing B = {(1,0,—-1),(0,1,—1)} asa
basis for W', and then writing p(g) for g € G as a matrix, gives us:

R I UR e P R B

and
p(123) = {_01 _11} and p(132) = {‘11 _01]

Of course, the identity goes to I as usual.

The corresponding character y,; = (recall that the trace does not depend on the
choice of the basis of W) is just 0 if the permutation is even and not the identity
and —1 is the permutation is odd. Taking into account the identity, we can say
Xply (@) =0 mod 2 if o is even and x|, (¢) =1 mod 2 is o is odd.

We call this irreducible character (why is this not reducible?) Ystandara and the
corrsponding representation the standard representation, (pstandard, W)-

Now, let that unknown third irreducible character be y: Let x(0) = « for
transpositions ¢ and x(7) = g for 3-cycles 7. By the orthogonality of
irreducible characters, we know

1

<X> Xtrivial> - 6 Z X(U)Xtrivial<0) =0 = 3a+ 25 = _17
oES3
and utilizing the other character we have
<X:Xstandard> =0 = 6 =1
Putting these numbers toegther, we get x(e) = x(123) = x(132) = 1 and
x(12) = x(13) = x(23) = —1.
Thus, x(o) is simply the sign of 0! We call it the sign character: Xsign-

All in all, we now have the character table of S3!
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Onto S,!

Let’s continue our analysis of symmetric group with the next one: S;. As usual,
we have the trivial character: Yirivial, that returns 1 for all g € S4. In much the
same way as last time, we can construct a natural representation for Sy, that
assigns a g € Sy to the corressponding 4 by 4 permutation matrix, as viewed as
an element of GL(R*). This won’t we irreducible however, as the vectors that
have all coordinates equal in R* will be invariant under the action of the p(g)’s.
The 3 dimensional complement of this invariant line will be invariant, and that is
our standard representation, which character Xstandara. D0ing the computations,
weget[2,1,1] - 1,[2,2] = —1, [3,1] — 0 and [4] —»= —1.

It’s time to invoke the orthogonality! We still have two unknown characters: 1
and x-». Using the sum of squares formula, we have

12+ 12 + 3% + 22 + 23 = |S,| = 24, which implies 2% + x5 = 13, which forces
x1 = x1(e) = 3 and x5 = x2(e) = 1. Leting x; take on values a;, as, a3 and a4
and using the three equations:

<X1> Xtrivial> = <X17 Xstandard> = <X17 Xsign) = 07

we get

° 6&1 + 3(12 + 8&3 + 6(14 = —3,
° —6CL1 + 3@2 + 8(13 — 6&4 = —3,
° 2(11 — a9 — 2&4 = -3.

Adding the first two equations, 3as + 8a3 = —3. Notice that the a’s must be
integers, so this is linear diophantine equation. Upon solving, we get

a; = —8n — 1 and a3 = 3n, for n € Z. Adding the last two equations, we get
2a3 — 3a4 = —3 and so a4 = 2n + 1, and substituting these expressions into the
first equation yields a; = —2n — 1.

We do the same drill with y» (which takes on the values by, - - - , b,) to get that
b =—-8m —06,by =3m+2,b3=3m+2and by = 2m + 2 form € Z.

Lastly, we have an equation involving both the n’s and m’s as (x1, x2) = 0,
which gives us 312mn + 48m + 240n + 48 = 0. This implies m = —1 and
n = 0 by the SFFT.

This completes our character table for Sy - just using orthogonality!



Tensor Products

Recall that we have the notion of the tensor product of two representations - a
tool that we can use to possibly build x; and x2 from Xtrivial, Xsign @0d Xstandard -
In that direction, we will derrive an expression for the character of a tensor
product. But Before that, we look at a slightly different expression for a
character of a representation.

Let’s fix a basis By = {vy,- -, v,} for V. Recall that we have a corresponding
dual basis, {v},--- ,v%} for V*, the dual space of V: Givena v € V, v}(v) is
the coefficient of v; in the expansion of v in terms of the By, basis. Thus, the
matrix representation (with respect to By) for py(g) € Endc(V) has (¢, 5)—
entry v} (p(g)(v;)). Taking the sum of the diagonal entries to get the trace, we
have

xv(g) = Z vt (p(g)(v:)).

Now we can work with the character of a tensor product better: Let I/ be a
vector space with basis By, = {wy, - -+ , wy, }. Then a basis for V@ W is
T={v,®w;:1<i<n,1<j<m}.Acorresponding dual basis for
(V@ W)* would be {(v; ® w;)*: 1 <i<n,1<j<m}, where we define
(v; ® wy)* (v ® wy) = ;505 and extend linearly. That is, (v; ® w;)* extracts the
coefficient of v; ® w; in the expansion of the input in the basis 7". That gives us
(v; ® w;)*(2) for an elementary tensor

2= QW = (Z aivi> ® (Z bjwj) = Z Z a;bj(v; ® b;)

i=1 j=1 i=1 j=1

is a;b;, which is also just v} (v)w}(w).

All in all, armed with this new formula for the trace, we have

vew(9) = Y. (0 @w) (pvew (o) (v @ w;))

i,j€n]x[m]

— Z (v; @ w;)* (pv(9)(vi) ® pw(g)(w;))

i,5€[n]x[m]

— Z v (pv (9) (vi)w; (pw (9)(w;))

i,j€[n]x[m]

= (Z v} (pv(g)(vi))) <Z wf(pw(g)(wj))>

= xv(9)xw(9)-



So the tensor produt a representations just has the effect of multiplying the
corresponding characters! In fact, going back to our character table for S, we
can see that X1 = XsignXstandard - that’s another free character for us!
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