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Introduction
In this post, we aim to glean as much as we cam about the characters of the

symmetric groups (today we’ll be focusing on  and ) using simple

properties of characters.

First up, !
The most natural representation of  (in fact, this hardly seems like a

reprsentation at all!) would to be let  be such that it sends 

 to its  by  permutation matrix and . For instance, 

and 

Unfortunately, this is not an irreducible one: all the ’s leave 

for a real alone. Hence,  is an invariant subspace of 

(an invariant line). The projection operator  onto  is 

for all , and 

That is,  is the orthogonal complement of  under the dot product. By

definition, .
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According to Maschke’s theorem (or Theorem 1 from Serre’s 1977 book),  is 

also an invariant subspace. We can do a quick spot check: 

 for . Setting 

, we see that  and ,

works and so , as we expect.

The subrepresentation  is thus just the trivial representation: There just

isn’t much freedom offered by a good ’ol line. However, the degree 2

reprsentation  is more interesting. Notice that  so 

can be indentified with  by  matrices. Fixing  as a

basis for , and then writing  for  as a matrix, gives us:

and 

Of course, the identity goes to  as usual.

The corresponding character  (recall that the trace does not depend on the

choice of the basis of ) is just  if the permutation is even and not the identity

and  is the permutation is odd. Taking into account the identity, we can say 

 if  is even and  is  is odd.

We call this irreducible character (why is this not reducible?)  and the

corrsponding representation the standard representation, .

Now, let that unknown third irreducible character be : Let  for

transpositions  and  for 3-cycles . By the orthogonality of

irreducible characters, we know 

and utilizing the other character we have 

Putting these numbers toegther, we get  and 

.

Thus,  is simply the sign of ! We call it the sign character: .

All in all, we now have the character table of !
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Onto !
Let’s continue our analysis of symmetric group with the next one: . As usual,

we have the trivial character: , that returns  for all . In much the

same way as last time, we can construct a natural representation for , that

assigns a  to the corressponding  by  permutation matrix, as viewed as

an element of . This won’t we irreducible however, as the vectors that

have all coordinates equal in  will be invariant under the action of the ’s.

The  dimensional complement of this invariant line will be invariant, and that is

our standard representation, which character . Doing the computations,

we get , ,  and .

It’s time to invoke the orthogonality! We still have two unknown characters: 

and . Using the sum of squares formula, we have 

, which implies , which forces 

 and . Leting  take on values , ,  and 

and using the three equations: 

we get

,

,

.

Adding the first two equations, . Notice that the ’s must be

integers, so this is linear diophantine equation. Upon solving, we get 

 and , for . Adding the last two equations, we get 

 and so , and substituting these expressions into the

first equation yields .

We do the same drill with  (which takes on the values  to get that 

, ,  and  for .

Lastly, we have an equation involving both the ’s and ’s as ,

which gives us . This implies  and 

 by the SFFT.

This completes our character table for  - just using orthogonality!

• 

• 

• 



Tensor Products
Recall that we have the notion of the tensor product of two representations - a

tool that we can use to possibly build  and  from ,  and .

In that direction, we will derrive an expression for the character of a tensor

product. But Before that, we look at a slightly different expression for a

character of a representation.

Let’s fix a basis  for . Recall that we have a corresponding 

dual basis,  for , the dual space of : Given a ,  is

the coefficient of  in the expansion of  in terms of the  basis. Thus, the

matrix representation (with respect to ) for  has 

entry . Taking the sum of the diagonal entries to get the trace, we

have 

Now we can work with the character of a tensor product better: Let  be a

vector space with basis . Then a basis for  is 

. A corresponding dual basis for 

 would be , where we define 

 and extend linearly. That is,  extracts the

coefficient of  in the expansion of the input in the basis . That gives us 

 for an elementary tensor 

is , which is also just .

All in all, armed with this new formula for the trace, we have



So the tensor produt a representations just has the effect of multiplying the

corresponding characters! In fact, going back to our character table for , we

can see that  - that’s another free character for us!
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