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Introduction
One of the key ways mathematics progresses is by first identifying a pattern in a
more-or-less familiar setting, and then taking a leap by trying to extend this
pattern to a more general environment—one that is, in some sense, larger than
the previous one. Perhaps the old pattern still holds, or perhaps it doesn’t. In
the latter case, our goal is to understand exactly where, in the leap of abstraction,
it fails. Usually, the by-product of this process is the creation of an entirely
new landscape of mathematical objects. On the one hand, these objects follow
certain intuitive rules inherited from our original setting; on the other hand,
they introduce fundamentally new structures. At any rate, the motto here is:
with generalization, through abstraction, comes power−as we shall explore today.

The Integers: Our First Abstraction
Our story begins with the integers (denoted here by Z), which are essentially the
numbers you will recite as you count the hairs on your head or the grains of sand
on a beach—along with their negatives. Another way to think about them is to
draw them against the backdrop of the continuum of real numbers (or simply a
line, which is what the real numbers are!). They appear like a one-dimensional
version of galaxies in the universe against the vacuum of space: evenly spaced
and discrete, like a sieve. After all, there are no integers between, say, 0 and
1, whereas there are an awful lot of real numbers—infinite decimals—between
0 and 1! In fact, there are so many real numbers(no matter how far you zoom
into the number line, you just keep seeing more) that, we cannot even count
them—but that is a story for another day.

Figure 1: The Integers: Discrete Like a Sieve.

The integers aren’t terribly exciting just sitting there like dots, staring up at
us−and they weren’t invented to just stay put anyways! Indeed, their raison
d’être is to do calculations−like after measuring the length and breadth of a
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plot of land, say 120 meters and 67 meters, we would multiply the two numbers
up to get the area of the plot−the number of tiny 1 meter by 1 meter squares
that make up the entirety of the humungous plot. And we even developed a
fool-proof algorithm to multiply to integers like 120 and 67, something we learnt
way back in elementary school! Notice that if I had to figure out, say, the money
I would earn if I sold 120 of my hairs for 67 dollars each (yuck!), I would do
the exact same thing, even though a huge amount of dirt (that is, the plot) and
dead cells (that is, my hair) are nowhere near to being equal!

And just like that, we have our first, albeit painfully trivial, abstraction, a thing
that is strewn in such high quantities across the mathematical landscape that
it practically makes it up. The number 120 is a clean ‘abstraction’, meant to
represent 120 hairs and 120 meters of dirt at the same time! We created the
integers as a whole by observing a specific commonality between two very distinct
sets of objects−their number!

The next step after getting rid of all the unnecessary details (In the context of
counting, this was simply replacing each instance of that particular object with
the same indistinguishable token, so that only differences in the number count, as
opposed to a difference in structure or the appearance. At other times, we may
be interested in other properties of objects, so that we abstract differently, keep
this in mind!) to create a set of ‘counting classes’, is to formulate meaningful
rules to manipulate these ‘counting classes’. As we saw, thanks to the reasonably
large degree of abstraction that went into creating the integers−in that one
integer can stand for a frighteningly large diversity of objects−in the first place,
these rules will carry quite a bit of power.

One such rule is multiplication: On the one level, it’s just a procedure to convert
an input of two integers into a single one (one of infinitely many so called binary
operations−try inventing a few yourself!), but it is deeply grounded in a concrete
physical meaning−the area of a rectangle−as we saw. The other main rule is
that of addition, which has a yet more elementary physical interpretation: the
total number of objects when many collections of objects are placed side-by-side.
The last step, obviously, is to interpret the result of the abstract manipulation
in the context of the situation!

Taking Off
Now, we play around with the integers, building up to our central characters−a
very special subset of the integers.

You might notice that given integer 1 and the operation +, you can reach any
positive integer: 2 = 1 + 1, 3 = 1 + 1 + 1 and so on (we’re ignoring the negatives
and zero for the moment), but that 1 and × keeps you firmly stuck on 1. Indeed,
no single number and × can create the whole of Z+ (the set of positive integers).
Instead we must broaden our scope and ask what subset S of the integers along
with × can generate Z+? Clearly we can choose S = Z, so we really should be
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asking for the smallest possible S. In some sense, S compresses down Z under
multiplication as much as possible!

One way to think about this is to first restrict our field of vision down to the
set {1, 2}, and then increasing it to {1, 2, 3} and then to {1, 2, 3, 4}, continuing
on like this, just adding one number at a time, building S for each of these
restricted versions of Z+. You can think about the greatest element of this chain
of sets like a slider, and we’re pulling it out to infinity, a step at a time. We
shall use Sn denote the S for {1, · · · , n}.

First, for {1, 2}, S2 is just the whole thing: you need both 1 and 2, as we noted
above. Second, we consider {1, 2, 3}. There too, you realize that you need 3 as
well, as multiplying 2 by itself and by 1 any number of times is always even,
and 3 is odd: so 3 ̸∈ {1, 2}×, where we added that little × to denote the set of
all numbers you can get by multiplying 1 and 2 with each other any number of
times. Observe that Sn is always contained in Sn+1.

This pattern halts, at least for once, at the third set: {1, 2, 3, 4}. Here you do
not need to add 4 to S3 = {1, 2, 3}, as 4 = 2 × 2, meaning that S4 = {1, 2, 3}.
For the first time, we’ve been able to truly compress such a set, albeit to a very
small degree! Try computing more Sn’s!

As you might’ve already guessed, Sn is essentially the set of the so-called prime
numbers: the building blocks of the integers under multiplication, or the most
compressed version of the integers under multiplication, as we have just seen.
The other elements of {1, · · · , n} (the elements of the set theoretic difference
{1, · · · , n} − Sn), the compressible numbers, are called composite numbers.

A playful analogy to draw here (and one that we will come back to surprisingly
often) is to think of the primes as atoms and composite numbers like molecules
from chemistry (we are not assigning primes to quarks for a very deliberate
reason!). This analogy has many limitations, one of them being that prime
numbers are infinite in number, whereas there are only finitely many stable
atoms, but let us overlook these transactional details for the moment.

Indeed, this connection helps us come to terms with a notable property of
the integers, that of unique factorization. Take the example of a molecule of
water−essentially an oxygen atom stuck (the analogue of multiplication) to two
hydrogen atoms. Notice that a water molecule will only ever be made up of
atoms in this particular way: one O atom connected to two H atoms! Drawing
on this analogy, it would seem only logical for this to hold in Z as well: in that
every integer can be expressed uniquely as the product of primes−the composite
number 105 is 3 × 5 × 7 and is only 3 × 5 × 7. And, as it turns out, it does
actually hold!

But this is not always true−only when we are naive and narrow-minded.
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Figure 2: Water is, and is always going to be, H+H+O.

What Next?
Less abstractly, we’re going to move beyond the realm of the usual integers,
creating new, integer like objects (mind you, there are not the integers, only
similar), where the same element has two different prime factorizations−loss of
unique factorization! These integer like objects will live in the complex plane,
rather than the real line, as you shall soon see. Then, in an attempt to recover
unique factorization in this new setting, we will find ourselves replacing individual
numbers, with sets of numbers−and so we will succeed in creating a new object
as a result of trying to extend a broken pattern.

Before we set (pun intended!) out on our adventure to foreign landscapes, let us
take one last look at divisibility in Z−which will give a hint at those ‘sets’ we’ll
ultimately be considering.

Divisibility and Sets
When we say 2 divides 4 (written as 2 | 4) what do we mean? On the one hand,
it is simply saying that 4/2 is an integer, as opposed to a fraction or even worse,
a real number (formally, there exists an integer b such that 4 = 2b)−but there’s
also a visual way to analyse this situation.

We start with the integers−evenly spaced and looking up at as usual−and stretch
on them, keeping 0 fixed, so that the distances between next-door integers
increases by a factor of 2: 1 is now where 2 was and −4 is where −8 was. If we
remove the labels on the dots and place this transformed line atop the orginal
one, we see we’re left with 2’s version of the integers: the integers you’d be
able to vist if you only were armed with a pair of self-regenrating arrows: one
that read ‘JUMP +2’ and another that read ‘JUMP −2’. In fact, this a way
to view the integer 2 as acting upon Z: It yields the set−really a proxy of the
integers−2Z, the set of all multiples of 2.

Figure 3: 2’s version of the integers.

Now, what happens when we place 4’s version of the integers upon 2’s version
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of the integers? Didn’t notice? Well, try reversing the order by first placing
4’s version of the integers on the base slate and then placing 2’s version of the
integers atop that. Did you see what happend? 4’s version of the integers was
completely & cleanly masked by 2’s version of the integers! Mathematically, the
set 4’s version of the integers is contained in the set 2’s version of the integers.
This is becuase the new pairs of arrows: one created by gluing two ‘JUMP
+2’ arrows and the other created by gluing two ‘JUMP −2’ arrows means you
can visit even less integers that before−you’ve surrendered your precise visting
abilities! Essentialy this clean containment of sets is manifestation of the fact
that 2 divides 4−try and see this!

Figure 4: 4’s version of the integers.

On the other hand, the result is not so satisying if we place 3’s version of the
integers atop 2’s version of the integers or the the other way. We don’t get a
clean containment−we can see orange and red dots lurking here and there. This
is preceisly becuase 2 does not divide 3. Indeed, n’s version of the integers is
always contained in Z−which is 1’s version of the integers−because every integer
is divisible by 1.

To sum up, we can view a single integer as set−its version of the integers which
is its multiples−and divisibility can be seen as a containment of those sets.

And now, we create our new integers.

Travelling Beyond
Let’s take another look at Z, this time with their ambient space in mind−the
real numbers, which is essentially a line, a one dimensional object. Could we
come up with an analogue of the integers for a plane rather than a line? That
object would truly earn the moniker of a sieve.

Well, mathematically speaking, the complex numbers describe a plane, just
like how the real numbers describe a line. As a review, the complex numbers
is the set {a + bi : a, b ∈ R}, which can alternatively be viewed as ordered
pairs of real numbers, along with well-defined rules for addition, subtraction,
multiplication and division. The most natural notion of an integer here would
be a complex number where both the real and imaginary parts are integers:
Geometrically, you’re starting with the usual integers, and translating them
upwards and downwards in the complex plane by an inetger.

We’ll use Z[i] to denote this notion of the complex integers (notation to be
explained!). And sure enough, the picture looks pretty convincing−equally
spaced dots looking up at us!
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What’s more is that one can still add, subtract and multiply any two such
elements of Z[i] and get back an element of Z[i], but you can’t necesarily divide,
in the sense that the quotient of two such elements need not be in Z[i]−just like
it was in Z! Try and find examples of such quotients! Recall that it was precisely
becuase of the fact that you can’t cleanly divide any two integers it made sense
or non-trivial to talk about divisibility (anything divides into anything in R,
anything divides into anything in C).

Figure 5: The complex integers: Z[i]. Equally spaced, like a sieve.

To make things seem a bit less abstract, lets actually write down the rules for
the arithmetic operations on Z[i]. How do we add a + bi ∈ Z[i] and c + di ∈ Z[i]?
Just like we add complex numbers! After all, a + bi and c + di are complex
numbers−just like how adding two integers, say 2 and 3 is the same as adding
the real numbers 2 and 3. Explicitly,

(a + bi) + (c + di) = (a + c) + i(b + d).

This sum is in Z[i] because a + c, the real part, and b + d, the imaginary part
are both integers as a, b, c and d are integers and an integer plus another integer
is an integer! A very similar analysis can be done on the multiplication!

But this is naive thinking as well. Instead of translating the integers upwards
and downwards by an integer, why not by an integeral multiple of

√
5?

Check it out! This picture also looks pretty convincing!

Another way to think about it is we’ve applied the transformation represented
by the 2 by 2 matrix [

1 0
0

√
5

]
,

to each element of Z[i]. We’ll denote this set by Z[i
√

5] (can you geuss what
the notation means?). Written down explicitly, we start with an integer a, and
translating it upwards/downwards by an integral multiple of

√
5 is the same
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Figure 6: The new version of the complex integers. The elements of this set are
colored blue, while the orginal complex integers are black.

thing as adding ib
√

5 for some integer b (the degree of translation) to a−so
Z[i

√
5] = {a + bi

√
5 : a, b ∈ Z}. Essentially, we’ve just multiplied the vector

(a, b) with the matrix above.

What’s more−you can probably geuss what’s going to happen−we can still add,
subtract and multiply elements of Z[i

√
5] and get back an element of Z[i

√
5]−try

verifying this! And then, again, you can’t always divide in Z[i
√

5], so we can
talk about divisibility here as well!

The astute readers among you may not be quite convinced−yes, Z[i
√

5] is great,
but why did we have to stretch in the y−direction only? We could have done
the same thing with the horizontal axis, streching it out by a factor of

√
5, say?

And we could have completely done that−that set would still look discrete (try
drawing a picture), and still have the basic arithmetic operations apart from
division. The only problem with that would be that we would inadverntantly
loose 1−the multiplicative identity−in the process, and we kind of want that
number to be around, as it was present in Z. Stretching in the vertical direction
allows us to keep 1, lying on the horizontal axis, intact.

Where are the Primes?
Before we can start doing some factorization in these new lands, as promised,
we need to recover the notion of a prime. What does it mean for an element of
Z[i] or Z[i

√
5] to be a prime? To answer that, we ask what does it mean for an

element of Z to be prime?
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Well, it’s a usual integer p such that its only divisors are +1, −1, +p and −p.
Phrased differently, it’s a number p such that if we write p as a product, say
p = ab where a and b are integers, then one of them must be +1 or −1. Essentially,
only trivial divisors are allowed to divide that number, not even a peep more−and
we will be using this exact definition in Z[i] and Z[i

√
5].

Except that there are more trivial divisors−numbers that divide every
element−than just +1 and −1 here! But what are they?

Let’s stick with Z[i] first. Clearly +1 and −1 work, because their version of
Z[i]−their multiples in Z[i]−is the whole of Z[i]. And why is that? Because they
are the closet to 0 as possible−their step size, their arrow propelles one forward
as little as possible each time it is thrown. In particular, they are a unit distance
away from the origin. Similarly, +i and −i are also a distance of 1 from the
origin, and they divide every complex number as well!

All in all, it can be shown that the four numbers −1, 1, −i, i are the only trivial
divisors! Any other number will not work because it is too far.

There is a way to see this purely algebraically as well: we are looking for
a+bi ∈ Z[i] such that the quotient (c+di)/(a+bi) lies in Z[i] for all c+di ∈ Z[i].
That is, a+bi divides all c+di. Notice that this necessarily means that (a+bi)−1

must be a complex integer, simpy by setting c + di = 1. Conversely, if a + bi
has a multiplicative inverse (that is, (a + bi)−1) in Z[i], then the quotient

(c + di)/(a + bi) = (c + di) × (a + bi)−1

is automatically in Z[i] for all c + di! An element is a trivial divisor precisely
when it is invertible!

Next, we massage the expression for (a+bi)−1 a bit, by realizing the denominator:

1
a + bi

= 1
a + bi

× a − bi

a − bi
= a − bi

a2 + b2 .

Recall that both the real and imaginary parts must be integers, so that a2 + b2

must divide a and also divide b. Try and see if you can complete this argument!

We can do something similar in Z[i
√

5]. There, the only such numbers are the
ol’ −1 and +1−you might be tempted by i

√
5, but it is too far from 0. Indeed,

1 is not even present in i
√

5’s version of the integers as it is too close to 0.

We call −1, 1, i, −i to be the units of Z[i], and −1, 1 the units of Z[i
√

5]−named
quite naturally! And now we can define the analogue of primes in Z[i]: the same
definition holds for Z[i

√
5].

We say that an element x of Z[i] is irreducible, if whenever we write x as the
product of two elemnts in Z[i], one of them is a unit.

And now we factorize 6−quite a benign number, to say the least−in Z[i
√

5].
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The Breaking Point
Well, we all know that 6 = 2 × 3. But now we’re talking in Z[i

√
5], so we have

more exotic looking factorizations. In fact, notice that 6 = (1 + i
√

5)(1 − i
√

5),
and so

6 = 2 × 3 = (1 + i
√

5)(1 − i
√

5).

This might hardly seem surprising. After all, they are so many ways to write a
regular integer as a product−as a baby example take 24 = 2 × 12 = 4 × 6.

But, in this case, all the involved 6−invited partygoers−2, 3, 1+i
√

5, 1−i
√

5−are
irreducibles−not a casual 4, 6, 12 or 24 strolling down composite avenue noncha-
lantly.

‘No way!’ you shout! How can that be? 2 and 3 may be irreducibles, but 1+ i
√

5?
Seriously? I mean it literally comes in two parts!

But all we have to do is appeal to our freshly baked definition about irreducible−if
1 + i

√
5 is really an irreducible, then whenever we write 1 + i

√
5 = αβ for some

α and β in Z[i
√

5], then at least one of them−α or β−must be −1 or +1, and if
that turns out to be true, case closed!

First, let’s expand α and β a bit. Leveraging the set-theoretic definition of
Z[i

√
5], we can write α = a + bi

√
5 and β = c + di

√
5, for some integers a, b, c

and d. Putting everything together,

1 + i
√

5 = (a + bi
√

5)(c + di
√

5).

Now, we could expand the right side, but that is likely to get messy. Instead, we
simply take the usual complex number absolute value of both sides,∣∣∣1 + i

√
5
∣∣∣ =

√
6 =

∣∣∣a + bi
√

5
∣∣∣ ×

∣∣∣c + di
√

5
∣∣∣ =

√
a2 + 5b2

√
c2 + 5d2.

We don’t want those pesky square roots, so we simply square both sides to get

6 = (a2 + 5b2)(c2 + 5d2).

Notice that both terms on the right side are usual integers, and the left side is
obvioulsy an integer−and so from an equation in involving elements in Z[i

√
5]

we havean equation entirely in the integers!

Remember what we want to do: show that one of α = a + bi
√

5 or β = c + di
√

5
must be an integer. Well, on the one hand 6 is the product of the two integers
a2 + 5b2 and c2 + 5d2, and on the other hand, can only be written as 6 × 1 or
2 × 3 as a product of two (positive) integers! So, a2 + 5b2 and c2 + 5d2 must be
one of 1, 2, 3 or 6. Let’s go case by case!

• If a2 +5b2 is 1 then we’re done−a must be one and b must be zero, meaning
that α = 1 (see why this is the case!). Similarly, if a2 + 5b2 is 6, then the
other factor, c2 + 5d2 must be 1, meaning that β = 1 this time.
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• Next, consider a2 + 5b2 = 3. This is simply not possible, as 5b2 is too large
to be 3− it is always greater than 3 for non-zero b, meaning that if this
equation were to have a solution, then b must be 0. In that case, a2 =

√
3,

but
√

3 is not even rational, so no integer a exists. Similarly, one can show
that a2 + 5b2 = 2 is not possible.

Phew! That was some algebra heavy-lifting! But at the end of the day, look
what we have−1 + i

√
5 is an irreducible in Z[i

√
5]! And in much the same way,

it’s partner in crime, 1 − i
√

5 is also an irreducible. All in all,

6 = Irreducible × Irreducible = Different Irreducible × Different Irreducible,

something hard to reconcile with our experince in Z!

And with that, we transition into resuce mode. Can we, in some way, recover
unique factorization in this new set-up?

Try Hard Enough and. . .
Kummer, a German mathematician, would have none of this corrupt,
Z[i

√
5]−unacceptable business. The way he saw it, we ended up in such a weird

situation simply because we hadn’t factored enough.

Taking this thought quite literally, his idea was to have ‘numbers’−notice the
quotation marks−a1, a2, a3 and a4 such that 2 = a1 × a2 and 3 = a3 × a4 on
the one side; and on the other side, 1 + i

√
5 = a1 × a3 and 1 − i

√
5 = a2 × a4.

Now, on the one hand

6 = 2 × 3 = (a1 × a2) × (a3 × a4) = a1 × a2 × a3 × a4,

and on the other hand

6 =
(

1 + i
√

5
)

×
(

1 − i
√

5
)

= (a1 × a3) × (a2 × a4) = a1 × a2 × a3 × a4,

which would avoid all the drama! But what are these mysterious characters?
Surely they can’t be numbers−elememts of Z[i

√
5]! Indeed: Kummer merely

hoped that playing around with these a’s might lead to some deeper insights.

Let’s start by focusing on a1. First, a1 × a2 = 2, so a1 divides 2. Well, then a1
must divide any multiple of two−just like how 2 | 4 =⇒ 2 | 4n for any n ∈ Z.
Over here, we have a1 divides 2α, where α is in Z[i

√
5], as opposed to being just

in Z. Second, a1 × a3 = 1 + i
√

5, so a1 also divides 1 + i
√

5, and hence divides
β(1 + i

√
5), where β is some element of Z[i

√
5]. Adding the two pieces together,

a1 divides 2α + β(1 + i
√

5) (the sum of two multiples of a1 is again an multiple
of a1).

Essentially, this means that 2α + β(1 + i
√

5) for each α, β ∈ Z[i
√

5] is in a1’s
version of Z[i

√
5]! Or, writing it in terms of sets,{

2α + β(1 + i
√

5) : α, β ∈ Z[i
√

5]
}

⊆ ⟨a1⟩,
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where we put those funny brackets around a1 to denote its version of Z[i
√

5]−the
set of its multiples.

But what is the set on the left really?

Well, it is just 2’s and (1 + i
√

5)’s version of Z[i
√

5]! Using the funny brackets,
we write 〈

2, 1 + i
√

5
〉

⊆ ⟨a1⟩.

After a bit of thinking, one realizes that the containment ⊆ ought to be an
equality =: Indeed, if ⟨a1⟩ were any bigger, while still remaining a version of
Z[i

√
5], then it would actually be the whole of Z[i

√
5]−try seeing this yourself!

That would then imply that a1 would be a unit: +1 or −1, but that not solve
our purpose: for then a2 would have to be ±2, which does not divide 1 − i

√
5

((1 + i
√

5)/2 is not in Z[i
√

5]), meaning we don’t have a factorization at all.

All in all,
⟨a1⟩ =

〈
2, 1 + i

√
5
〉

.

But, alas, as we already know, there is no single number whose version of
Z[i

√
5]−the thing on the right−is 2’s and (1 + i

√
5)’s version of Z[i

√
5]−the

thing on the left. Try spelling the details out: suppose that a1 is really in Z[i
√

5].
Then use the divisibility relations that a1 satisfies to show that it must be either
+1 or −1−but that would mean that its version of Z[i

√
5] is the whole thing, as

we just discussed.

So, we must go one step further, dropping the bracket: ⟨⟩, going from a number
of a set, so that

a1 =
〈

2, 1 + i
√

5
〉

.

It is because of the impossibility of writting the
〈
2, 1 + i

√
5
〉

in the form ⟨a1⟩ for
a1 in Z[i

√
5] is why unique factorization fails for 6. Thus, the closest we can get

is setting a1 to be the whole set.

Notice that it is not just 2 that is inside a1, but rather the whole of 2’s version
of Z[i

√
5]−or ⟨2⟩−that is inside a1. Recall that ⟨b⟩ ⊆ ⟨a⟩ =⇒ a | b back in Z.

So, we get a fleeting hint that since ⟨2⟩ ⊆
〈
2, 1 + i

√
5
〉
,could we possibily have

that the set
〈
2, 1 + i

√
5
〉

divides the set ⟨2⟩? Well, then we must find a2 such
that

〈
2, 1 + i

√
5
〉

× a2 = ⟨2⟩, which is also going to be a set! What is a2?

Well, in a similar way, one reasons out that a2 =
〈
2, 1 − i

√
5
〉

(recall that this is
just the set of all possible sums of a multiple of 2 and a multiple of 1 + i

√
5 in

Z[i
√

5]).

But then what is 〈
2, 1 + i

√
5
〉

×
〈

2, 1 − i
√

5
〉

?

What does it mean to multiply two sets?
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We keep calm and use FOIL. More precisely, we just multiply a random element
of the first set with another random element of the second set, and then do this
for every pair of elements to get the product set.

Well, on the one hand, an element of the first set may be written as 2α+β(1+i
√

5)
and an element of the second set may be written as 2γ + δ(1 − i

√
5), for some

α, β, γ, δ ∈ Z[i
√

5]. Multiplying everything out, the product is

4αγ + 2βγ + 2βδ + 2αδ − 2i
√

5(αδ + βδ − βγ).

Did you notice? Its a Z[i
√

5] multiple of 2, since you can cleany factor out a 2!
And you can go the other way as well, showing that every multiple of 2 is of this
form! In other words, 〈

2, 1 + i
√

5
〉

×
〈

2, 1 − i
√

5
〉

= ⟨2⟩,

and we have no difficulty in associating the right side with 2. After all, it is
2’s version of Z[i

√
5]! So, while 2 is irreducible as a plain number, it is not

irreducible as a version of Z[i
√

5].

We can apply the same line of reasoning to 3, to get that〈
3, 1 + i

√
5
〉

×
〈

3, 1 − i
√

5
〉

= ⟨3⟩.

Now, watch what happens when we multiply
〈
2, 1 + i

√
5
〉

and
〈
3, 1 + i

√
5
〉
−you

can try working through the product−we get ⟨1 + i
√

5⟩ and we also have that〈
2, 1 − i

√
5
〉

×
〈

3, 1 − i
√

5
〉

= ⟨1 − i
√

5⟩.

Along the same lines, while 1 + i
√

5 is irreducible as a plain number, it is not
irreducible as a version of Z[i

√
5]!

What has this achieved? Well, clearly

⟨6⟩ = ⟨2⟩ × ⟨3⟩ =
〈

2, 1 + i
√

5
〉

×
〈

2, 1 − i
√

5
〉

×
〈

3, 1 + i
√

5
〉

×
〈

3, 1 − i
√

5
〉

and on the other side

⟨6⟩ = ⟨1+i
√

5⟩⟨1−i
√

5⟩ =
〈

2, 1 + i
√

5
〉

×
〈

3, 1 + i
√

5
〉

×
〈

2, 1 − i
√

5
〉

×
〈

3, 1 − i
√

5
〉

.

We have recovered unique factorization! We just had to look beyond numbers
and into some special sets.
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