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So this problem was proposed by a professor in a class yesterday. Here’s my
solution up for people to read, ponder, speculate, comment, critique, improve,
and digress on.

Problem
Given any set X, and a bijection f : X → X, there are functions g, h : X → X
such that f = h ◦ g and g2 = h2 = idX , the identity function. ## Solution

Definitions, assumptions, and set-outs We accept the Axiom of Choice
and use it freely. We define a function f : A → B as follows:

f := {(a, b) ∈ A × B | ∀a ∈ A, ∃!b ∈ B}.

Here for each a ∈ A, the corresponding b ∈ B is usually denoted by f(a). A
restriction of a function to a certain subset A′ ⊆ A of the domain A is defined
as f |A′ := {(a, f(a)) | a ∈ A′}. In the context of this problem, all the domains
and codomains we consider will be assumed to be non-empty.

Definition (Cycle). A bijection σ : A → A with |A| = n is called a cycle if
there is a bijection ϕ : {1, . . . , n} → A such that σ(ϕ(k)) = ϕ(k + 1) for all k < n
and σ(ϕ(n)) = ϕ(1).

Definition (Iterated composition). For bijection ϕ : A → A, we define
f0 := idA, the identity function on A and for each k ∈ N, we define fk := f ◦fk−1.
Moreover for any k ∈ N, we define f−k := f−1 ◦ f−k+1.

Definition (Orbit). Given a function ϕ : A → A, and some a ∈ A, the orbit of
a under ϕ is defined by orbf (a) = {fk(a) | k ∈ Z}.

Lemma 1. If a function ϕ : M → N is bijective, then for any P ⊆ M , the
restriction ϕ|P is also bijective. Proof. First we see that ϕ|P has to be injective,
because ∀x ̸= y ∈ M, ϕ(x) ̸= ϕ(y), hence too ∀x ̸= y ∈ P ⊆ M, ϕ(x) ̸= ϕ(y).
We can also see that ϕ|P surjective right by its definition, since for every
ϕ(p) ∈ Im(ϕ|P ), there is p ∈ M such that (p, ϕ(p)) ∈ ϕ|P .

Lemma 2. For any collection of bijections

C = {fλ : Aλ → Bλ | ∀λ ∈ Λ, fλ is bijective}

with all Aλ pairwise disjoint and all Bλ pairwise disjoint, the union function

f :=
⋃

λ∈Λ

fλ :
(⋃

λ∈Λ

Aλ

)
→

(⋃
λ∈Λ

Bλ

)
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is also bijective.

Proof. First we show that it is injective. Suppose x ̸= y ∈ A :=
⋃

λ∈Λ Aλ. Clearly
if x ∈ Aµ and y ∈ Aν with µ ̸= ν then Bµ ∋ f(x) ̸= f(y) ∈ Bν . If x, y ∈ Aλ,
then since fλ is injective, we have f(x) ̸= f(y) ∈ Bλ. Therefore we have f being
injective. Now we show that f is surjective. Consider any y ∈ B :=

⋃
λ∈Λ Bλ.

Then y ∈ BΛ for some λ ∈ Λ. Now since fλ is surjective, there is x ∈ AΛ ⊆ A
such that y = f(x), and hence f is surjective too, and therefore bijective.

Lemma 3. (Group theoretic) Given Sn = {1, 2, . . . , n} any permutation
σ : Sn → Sn can be written as a composition of disjoint cyclic permutations.
Proof. This proposition is well-known and we accept it without explicit proof
here.

Solutions, step by step Finite set case

First we show that the proposition holds for any finite set X. So without loss of
generality, we take X := {1, 2, . . . , n} with some n ∈ N. So what we do is that
we show this for all n ∈ N with any bijection f : X → X. For n = 1, there is
nothing much to be done, X = {1} and f = {(1, 1)}. So for the decomposition,
g = h = f is the only choice. Suppose we have such a decomposition for any
bijection of size upto n ∈ N. Now consider X = {1, 2, . . . , (n + 1)}. Then if there
is any cycle σk ⊂ f , with of course k ≤ n, then σk being a bijection, we can
write f = σk ∪ (f \ σk) as the union of two distinct bijections of size smaller
than (n + 1) (by Lemma 1), which therefore can be decomposed (by induction
hypothesis) into σk = h1 ◦ g1 and (f \ σk) = h2 ◦ g2, with all four functions
satisfying the requirements, i.e. f2

1 , f2
2 , g2

1 , g2
2 all being identities on respective

sets. So now by Lemma 2 we can have the two required functions g, h : X → X
being g = g1 ∪ g2 and h = h1 ∪ h2. The only case left is when there is no such
smaller cycle in the function. By Lemma 3 we can see that this is only possible
if f is itself a cycle. This can be broken down into two very similar but slightly
different cases, namely for (n + 1) being even, and odd, respectively. Case 1. If
(n + 1) is even, say 2m, then we construct g, h : X → X as follows:{

g(2m) = 2m, g(m) = m

g(k) = 2m − k, ∀k ̸= m, 2m
and h(k) = 2m + 1 − k, ∀k ∈ X.

It should be clear enough that these two indeed follow the conditions as required.
Case 2. If (n + 1) is odd, say 2m + 1, then the construction is as follows:

g(2m) = 2m + 1, g(2m + 1) = 2m

g(m) = m

g(k) = 2m − k ∀k ̸= m, 2m, 2m + 1
and

{
h(2m + 1) = 2m + 1
h(k) = 2m + 1 − k ∀k ̸= 2m + 1

Again it should be clear enough that these satisfy both requirements. And with
this we have finished the induction, and therefore the proof of the proposition
for the case of a finite set.
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Countably infinite case

Now we show that the proposition holds for a very special countably infinite
case. The more general cases will be dealt with in the final solution. So the case
here is when X is of the form X = {. . . , x−1, x0, x1, . . . }, indexed by Z, with all
xi distinct, where for any k ∈ Z, xk = fk(x0). This is indeed an orbit of the
function where we not only consider the sequence of composing f on x0, but
also the sequence “backtracking” from x0. The instances where anywhere in the
composition sequence or the “backtracking” sequence there is a loop or cycle,
will not be considered in this case and will instead be dealt with only in the
final general case. So with the outset aside, the construction of the functions
g, h : X → X is as follows:

∀n ∈ Z, g(xn) = x−1−n and h(xn) = x−n.

This too is left to the consideration of the reader to see why this construction
satisfies the requirements of the proposition.

The final solution

Given the set X and a bijection f : X → X on it, we consider the following
equivalence relation first. We define (∼) ⊆ X × X by x ∼ y (or alternatively
(x, y) ∈ (∼)) if and only if there is k ∈ Z such that fk(x) = y. Now we consider
the set of all equivalence classes (the set of all distinct orbits of f) X/ ∼ such that,
for all C, D ∈ X/ ∼ with C ̸= D, we have C ∩ D = ∅, and that

⋃
(X/ ∼) = X

(since the set X/ ∼ is just a partition of X), and that for any C ∈ X/ ∼, we
have x, y ∈ C ⇐⇒ x ∼ y.

So now we have a closer look at each C ∈ X/ ∼. Notice that C ⊆ X, and that it
is of one of two forms. The first is when C is a finite orbit, and C = {x0, . . . , xn}
for some n ∈ W, where x1 = f(x0), x2 = f(x1), and so on, with x0 = f(xn).
Notice that this also includes the case of the fixed points of f , where we do
not go beyond x0. The second is when C is countably infinite, in particular,
we index it with the integers, as C = {. . . , x−2, x−1, x0, x1, x2, . . . }. Here for
any n ∈ Z, f(xn) = xn+1. It is easy to see that since f is bijective, if we start
from any “first” element, we will always have more equivalent elements (of X)
by taking repeated inverses. We claim that these two are the only possibilities,
namely that any such infinite C ∈ X/ ∼ can always be indexed by the integers,
and moreover that C cannot be uncountable. Both of these claims are easy
to show, since, by choosing any x0 ∈ C, if x ∈ C, then there is k ∈ Z such
that fk(x0) = x, so we can uniquely assign the index k to that x, since f is
injective. This also removes the possibility of C being uncountable because we
have demonstrated a surjection Z ↠ C. So therefore we have shown, rather
argued, that any equivalence class C ∈ X/ ∼ is countable.

Now consider the following set of restrictions of the function

Rf := {f |C : C ∈ X/ ∼}.
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Each f |C is bijective, as can be easily checked by the definition of each class C.
And since each distinct C is disjoint, we can see (by the way we have defined a
function as a set of pairs) that

f =
⋃

C∈X/∼

f |C .

Now, to finish off the problem, notice that we have already solved it for bijections
over any finite set and any countably infinite acyclic chain in the previous
two cases. So using those results, we see that for each C ∈ X/ ∼, there are
gC , hC : C → C such that hC ◦ gC = f |C and g2

C = h2
C = idC . So now we define

the final two required functions g, h over X as

g =
⋃

C∈X/∼

gC and h =
⋃

C∈X/∼

hC .

Notice that these functions do really follow these properties, as can be easily
checked.

Therefore, given any X, and bijection f : X → X, we can decompose f into two
self-inverse bijections g, h : X → X, i.e. with g2 = h2 = idX such that f = h ◦ g.

QUOD ERAT DEMONSTRANDUM.
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