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1 Problem formulation

A nonlinear state space system given by

ẋ = f (x,u)

y = h (x) (1)

where x ∈ Rn is the state vector, u ∈ Rd is the known input vector and y ∈ Rp

is the measurement vector. The functions f(·) and h(·) are known as the state
dynamics and measurement models, respectively. One definition of observability
states that given sufficient measurements y and known inputs u, it is possible
to uniquely determine the initial state x0 ≡ x (t = 0). In order to arrive at the
derivation for the nonlinear system observability condition, let us track back to
obtain the observability condition for linear systems.

2 Observability of a linear state space system

If the state dynamics and measurement model functions in (1) are linear, then
the system in (1) can be expressed as

ẋ = Ax+Bu

y = Cx (2)

where A,B and C are the state transition, input and measurement matrices,
respectively. They are also assumed to be time invariant, i.e., their derivatives
with respect to time are 0.

Applying the first derivative in time to the measurement equation in (2), we
get

ẏ = Cẋ (3)

Substituting for ẋ in (3) from (2)

ẏ = CAx+ CBu (4)

Applying the second order derivative on both sides of (4), and again substituting
from (2), we get

ÿ = CAẋ+ CBu̇

= CA2x+ CABu+ CBu̇ (5)
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As u and its derivatives with respect to time are assumed known, absorbing the
terms related to u and its derivates into the left hand side and simplifying the
notations we get the following system

y(0) = CAx

y(1) = CA2x

...

y(n−1) = CAn−1x (6)

where y(n−1) denotes the (n− 1)th order derivative or ẏ
(n−2)

.
Expressing (6) in matrix form, we have

Y = Ox (7)

From (7) it is clear that, in order for a unique solution to exist for x, the
observability matrix O ∈ R(np×n) needs to be full rank, i.e., rank needs to be n.

3 Observability of a nonlinear state space sys-
tem

From the previous section, it is clear that in order to derive the observability
condition of the nonlinear state space system in (1), we have to obtain the
derivatives of y. Consider the nonlinear measurement model

y = h(x) (8)

Applying chain rule we get

ẏ =
∂h

∂x
ẋ

=
∂h

∂x
f(x,u) (9)

where the representation of ẋ has been substituted from (1). The second repre-
sentation in (8) can also be described using the concept of Lie derivatives from
differential geometry as follows

L(1)
f h =

∂h

∂x
f(x,u) (10)

where L(1)
f h is the first order Lie derivative of the function h with respect to

another function f . As a result the first order derivative of the measurement y
in (9) can now be expressed as

ẏ = L(1)
f h (11)
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Taking the second order derivative of the measurement vector y in (9), we
get

ÿ =
∂ẏ

∂x

∂x

∂t

=
∂

∂x

{
L(1)
f h

}
f(x,u)

= L(2)
f h (12)

Stacking up the derivatives of y up to the (n− 1)th order we get

y(0) = L(0)
f h

y(1) = L(1)
f h

...

y(n−1) = L(n−1)
f h (13)

where L(0)
f h = h and y(0) = y. Expressing (13) in matrix form, we get

Y = Lfh (14)

It is straightforward to show that, if

f(x,u) = Ax+Bu

h(x) = Cx (15)

then (14), reduces to (7). From (7), applying a partial derivative with respective
to x to both sides, we get

∂Y
∂x

= O (16)

Applying the same operation to both sides of (14) and using the definition of
the observability matrix arrived at in (16), we get

O =
∂Lfh

∂x
(17)

Expressing (17) in vector form

O =


∂L(0)

f h

∂x
∂L(1)

f h

∂x
...

∂L(n−1)
f h

∂x

 (18)

where O ∈ Rnp×n. As has been shown in the section on linear observability, in
a similar manner, for a nonlinear system (1) to be observable, the observability
matrix defined in (18) has to be full rank.
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