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In this short post we are going to study the sum
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where ¢ is a permutation of N. As you can see, this a variation of the famous
. o 1 . e o
harmonic sum } ;~ | 7z whose value is equal to %-.

If you want to explore this problem by yourself before I reveal more, now is the
time. I do believe that fiddling with this sum before reading on would make the
rest of this blogpost more interesting.
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The inequality

We are going to prove that
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Again, if you want to find a proof by yourself, now is the time.
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Proof number 1
We are going to use Cauchy-Schwarz inequality. To do so, consider the infinite
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is exactly S. By Cauchy-Schwarz inequality we have
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vectors (1 1L ) and (ﬁ, ﬁz)’ ﬁ, .. .), and note that their scalar product
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And since "2, ﬁ =t U(i)g = %2 we can directly deduce the inequality

we wanted to prove.

Proof number 2

For this proof, we are going to use the AM-GM inequality. For every k € N we
have that #(k) =, /k% . ﬁ and thus, by the AM-GM inequality, we obtain
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https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
https://en.wikipedia.org/wiki/AM%E2%80%93GM_inequality

By summing all these terms for £ > 1 we obtain S < % 220:1 (k% + ﬁ) and

since Y oo, & = Dopy n(}c)2 = %2 we can directly deduce the inequality we
wanted to prove.
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