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Online Convex Optimization
The online convex optimization is stated as a general repeated game between a

player and an adversary as follows:

The performance of algorithms for the above problem is often measured by the

regret, which is the difference between the cumulated loss derived by the

algorithm and the best fixed action in hindsight: 

The goal of the player now is to keep the growth of  sublinear in , so that

the average regret per step goes to zero as .

Without assumptions on the loss function , the above problem is impossible to

solve. Therefore, we need to restrict the adversary’s power in choosing the loss

functions and also provide the player with some additional hints:
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View 1: Subgradient algorithm
with projection

Since  is strictly convex, we know that  is nonnegative and 

 iff .

Let’s break down the projection operator above to get a handy result we will use

later. For that purpose, define the indicator function 

We also have that the subdifferential  is the normal cone to  at ,

denoted by . Now, expanding the projection, we have 

By first-order optimality condition: 

Rearranging, it follows that 

Since the projection exists and unique, we can write, without any ambiguous, 

We are now at the position to present our first view of the (Online) Mirror

Descent algorithm. The algorithm is often written in the form of subgradient

algorithm with projection as follows:



This is a generalization of the subgradient algorithm, where the projection can be

based on any Bregman divergence rather than the Euclidean distance. Therefore,

it captures the geometric properties of  more effectively.

Let’s explain why this update procedure is called a subgradient algorithm with

projection, i.e., where the “projection" comes from. We rewrite our algorithm as 

By the first-order optimality condition, we have 

Rearranging, we get 

Now, let  be a point such that . We can then

rewrite  as 

By ,  is exactly the Bregman projection of 

onto . Moreover, this projection is guaranteed to exist and be unique, thus we

can write 

In addition, by proposition ,  is guaranteed to be in the interior of .

Therefore, our algorithm is well-defined.

View 2: Mirror descent
Now we move to the second view of the algorithm, the view of Mirror Descent

introduced by Nemirovski and Yudin for convex optimization. Let first define

the convex conjugate (or Legendre-Fenchel transformation) of the function ,

denoted by : 



Intuitively, first  maps  from the primal space  into its dual space, and

the update is done in the dual space. Then,  maps the new point from the

dual space back into .

Now we show that this second view is equivalent to our first view, i.e. the

sequences  produced by the two algorithms are identical. Applying the

first-order optimality condition to the definition of , we have 

, or . Moreover, by proposition 

and by the conjugacy, we have 

We can then rewrite our update as 

where  is the point with . This is exactly the

interpretation of our first view as showed in .
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