
Algorithm
written by VickysLearning on Functor Network
original link: https://functor.network/user/2930/entry/1002

This post summarizes what I’ve learned from The Art of Computer Program-
ming, Volume 1: Fundamental Algorithms (3rd ed.) by Donald E. Knuth (1997),
Chapter 1 Section 1 [p. 1-9]. The exercises, algorithms and some answers dis-
cussed are drawn from this book.

Algorithms are similar to recipes or routines. However, rather than being
executed by a person, algorithms are executed by a computer. Recipes and
algorithms are quite similar in a sense that they both consist of finite sequence
of operations designed to solve a problem. The key distinctions between recipes
and algorithms are outlined by the following five features:

Finiteness: The sequence of operations must be finite and must eventually
solve the problem.

Definiteness: Each step of an algorithm must be precisely defined

Input: There can be zero or many inputs.

Output: An algorithm must produce at least one output, which is the result
of the problem the algorithm is trying to solve.

Effectiveness: The operations should be simple enough to be performed with
just pen and paper and should have a finite length.

When an algorithm lacks finiteness, it is referred to as a computational
method. One can define computation methods in terms of set theory.

Definition 1. A computational method is a quadruple (Q, I,Ω, f), where Q is
a a set represents the states of the computation, I,Ω ⊆ Q are the input and the
outputs set respectively, and f : Q→ Q is the computational rule. The element
x ∈ I represents a computational sequence x0, x1, x2, . . . , where

x0 = x and xk+1 = f(xk) for k ≥ 0.

The computational sequence is terminated in k steps if k is the smallest integer
such that xk ∈ Ω. In algorithms, the termination step should be finite for all
x ∈ I.

Note that Definition 1 does not address the feature of effectiveness. To
restrict the method to elementary operations, we impose additional constraints
on (Q, I,Ω, f). For example: let A be a set of finite letters and A∗ be the set
of all strings on A. Let N ∈ N and Q be the set of all (σ, j), where σ ∈ A∗

and j = 0, 1, 2, . . . N . Let I ⊆ Q with j = 0, and let Ω ⊆ Q with j = N . If
θ, σ ∈ A∗, we say that θ occurs in σ if σ = αθω for some strings α, ω ∈ A∗.

1

Lastly, let θj , ϕj ∈ A∗, integers aj , bj ∈ Z, for any 0 ≤ j < N , and f : Q → Q
defined by

f ((σ, j)) = (σ, aj) if θj does not occur in σ

f ((σ, j)) = (αϕjω, bj) if α the shortest possible string for which σ = αθjω

f ((σ, j)) = (σ,N)

After doing the exercises, it seems clear what some of the notations represent.
The positive integer aj indicates which rule should be executed when a string
θj from the j-th rule does not occur in σ. Furthermore, it seems that bj refers
to the next step to be executed when a string θj is replaced by a string ϕj in σ.
At N , the algorithm terminates and the output is σ.

One example of an algorithm is the Euclid’s algorithm for finding the greatest
common divisor.

Algorithm 1 (Euclid’s algorithm). Let m,n ∈ Z, find their greatest common
divisor, that is , the largest positive integer such that it divides both m and n.
E1. [Ensure m ≥ n.] If m < n, exchange m↔ n.
E2. [Find remainder.] Divide m by n and let 0 ≤ r < n be its remainder.
E3. [Is it zero?] If r = 0, the algorithm terminates; n is the output.
E4. [Reduce.] Set m← n, n← r, and go back to E2.

Let us try this algorithm by hand. Let m = 10 and n = 122, then we
exchange m ↔ n because otherwise the reminder is zero, which is not their
greatest common divisor. Then the reminder of 122/10 is r = 2, since 122 =
12 · 10 + 2. Then we set m← 10 and n← 2, which has zero remainder because
10/2 = 5. Therefore, the greatest common divisor of 122 and 10 is 2. Note that
in Algorithm 1 step E4, we don’t go back to E1, since m > n always after the
first step. This is proven in the Exercise 2.

As a remark about Algorithm 1, the notations that is used here will be used
for other posts as well. The notation m← n means that we replace the current
value of m with the current value n. We are not using = since m = n will mean
something that can be checked. The exchange notation m ↔ n can also be
done by introducing an auxiliary variable, say t. Indeed, m ↔ n is equivalent
to t ← m,m ← n, n ← t. Lastly, the order of assignments is important. For
instance m ← n, n ← r is different than n ← r,m ← n. Indeed, the latter
means n← r,m← r, which is equivalent to n← m← r.

0.0.1 Exercises

1. [10] To rearrange (a, b, c, d) to (b, c, d, a), we can do t ← a, a ← b, b ←
c, d← t.

2. [15] The positive integer m is always greater than n at the beginning of
step E1, except possibly the first time this step occurs. Indeed, after it
occurs for the first time, we have m = qn + r, where 0 ≤ r < n. After
that, as long as r ̸= 0, we replace m by n and n by r. Since n > r, we
have that m > n after the first step.

2

3. [20] We can change Algorithm E so that the replacement operations,
such as latexm ← n, are avoided. Consider the example m = 500 and
n = 111. According to Algorithm E, we have 500/111, which has a re-
mainder r = 56. Instead of replacing m ← n, we can set m ← 56 and
compute n/m. Then, 111/56 has a remainder r = 55. Because r ̸= 0, in
Algorithm E, we compute 56/55. Because m ← 56, we can this time set
n ← 55 and therefore we are computing the remainder of m/n, which is
1. Lastly, if we set m ← 1, the remainder of n/m is zero. Set n ← 0,
then m is the output. In the above procedure, we do not use m← n. To
summarize, we have the following updated algorithm:

Algorithm 2. Let m,n ∈ Z, find their greatest common divisor, that
is , the largest positive integer such that it divides both m and n.
F1. [Ensure m ≥ n.] If m < n, exchange m↔ n.
F2. [Find remainder.] Divide m by n. Assign the remainder r to m, i.e.
m← r.
F3. [Is it zero?] If m = 0, the output is n.
F4. [Find remainder.] Divide n by m. Assign the remainder r to n, i.e.
n← r.
F5. [Is it zero?] If n = 0, the output is m. Repeat to F2. There is no need
to go back to F1, since m > n always after the first exchange as proven in
Exercise 2.

4. [16] The remainder of 6099/2166 is 1767. Then, the remainder of 2166/1767
is 399. Then, the remainder of 1767/399 is 171. Then, the remainder of
399/171 is 57. Lastly, the remainder of 171/57 is zero. Therefore, the
greatest common divisor of 2166 and 6099 is 57.

5. [12] The ”Procedure for Reading This Set of Books” is not an algorithm
because it is not definite, effective and does not have an output. An
example of why definiteness is lacking is in step 15, where it is not clearly
defined where or for how long to sleep. Regarding the format difference
with Algorithm 1, there is no letter in front of each step, and there is no
short summary after each number.

6. [20] Let Tn be the average number of times step E2 (without executing
E1) is performed. Let n = 5, then we need to compute the number of
times steps E2 is performed for m = 1, 2, 3, 4, 5 since in step E2, only the
remainder is relevant. Writing out how many times E2 is performed for
m = 1, 2, 3, 4, 5 yields T5 = 2+3+4+3+1

5 = 2.6.

7. [HM21] Suppose m is known and n is allowed to range over all positive
integers. Let Um be the average number of times step E2 is executed in
Algorithm 1. The average Um is well-defined because the positive integer
keeps being reduced until the remainder is zero, at which point the algo-
rithm terminates. Therefore Um will not be ∞. Regarding the relation of
Um with Tm, consider the case m = 5 is fixed. Writing out the execution

3

of step E2, we will notice that for n > m, the number of times step E2
is executed increases by 1 compared to when n = 5 is fixed. Therefore
Um = Tm + 1. To confirm this, we compute the number of steps man-
ually for m = 5. First, for n = 1, 2, 3, 4, 5, the number of times step
E2 is executed are 1, 2, 3, 2, 1 respectively. Then, for every q > 1 such
that n = 5q + {1, 2, 3, 4, 5}, the number of times step E2 is executed are
3, 4, 5, 4, 2. Suppose we do this q many times, then

U5 = lim
q→∞

q(3 + 4 + 5 + 4 + 2) + 1 + 2 + 3 + 2 + 1

5q + 5

= lim
q→∞

q([2 + 1] + [3 + 1] + [4 + 1] + [3 + 1] + [1 + 1]) + 9

5q + 5

= lim
q→∞

(
q(2 + 3 + 4 + 3 + 1)

5q + 5
+

5q + 9

5q + 5

)
=

2 + 3 + 4 + 3 + 1

5
+ 1

= T5 + 1.

8. [M25] The goal of this part of the exercise, is to rewrite the Algorithm 1
without step E1 into an ”effective” formal algorithm. The given input is
ambn, and the question is, how should we define ϕj , θj , aj and bj? There
is a hint that states to start with r ← |m− n|, n← min(m,n). However,
we do not see how the hint is related to the input. After looking at the
answers and doing some research on the internet, we still don’t see how the
hint is suppose to help. Though, it clarifies how the algorithm proposed
in the answer is suppose to mimic Euclid’s algorithm.

The idea is to adjust the input, such that the output is agcd(m,n). To do
this, there are sets of rules that we need to specify. These rules contain
simple operations such that removing, adding and replacing strings. The
rule r ← |m − n| can be represented in terms of strings, by removing a’s
and b’s until either of them disappears, depending on whether m > n or
n < m. For instance |5− 3| can be programmed by removing both a and
b until a2 remains, and therefore the answer is 2.

Now, how about n ← min(m,n)? We connect this substitution with the
answer as follows: there needs to be a record of how much we subtract n
from m. This is because we will use this number again to compute |m−n|.
To do this, for instance, if m = 5 and n = 3, then we remove a’s three
times, and b’s will disappear. We then add a new letter c3, since we do
removal operations three times and we are left with c3a2. If m = 3 and
n = 5, then we are left with c3b2. To ensure that there is a loop and the
string is of the form ambn, we can replace all c’s by a’s and all a’s by b’s.

In summary, we perform the following algorithm with the input anbn. Let

4

A = {a, b, c} and 1 ≤ j < N = 5. Define

θj ϕj aj bj
j = 0 ab ∅ 2 1
j = 1 ∅ c 0 0
j = 2 a b 3 2
j = 3 c a 4 3
j = 4 b b 5 0

9. [M30] Suppose C1 = (Q1, I1,Ω1, f1) and C2 = (Q2, I2,Ω2, f2) are compu-
tational methods. The goal is to formulate a set-theoretic definition for
the concept ”C2 is a representation of C1”. Somehow, there should be
functions that translate objects from C1 to C2. In this exercise, we tried
to understand how the answer sheet explain one approach to solve this
problem.

First let us discuss the inputs and the outputs. The inputs in I1 should
be the inputs of I2 as well. Though they must be embedded in their
computational states. To formalize this, let g : I1 → I2 and h : Q2 → Q1.
These functions must satisfy the constraint h(g(x)) = x for x ∈ I1. As for
the outputs, we must ensure that the outputs of C1 corresponds to the
outputs of C2, and vice versa. That is, q ∈ Ω2 if and only if h(q) ∈ Ω1. In
other words, a computational state in C2 is the outputs of the algorithm
if and only if its translation via h are outputs in C1.

Now how about the computational rules? Well, when translating a text-
book algorithm into a computer program, we sometimes need several steps
to convert the abstract rules into a form that a computer can execute.
These rules in C2, should translate the rules in C1. Let q ∈ Q2, we require
that f1(h(q)) = h(f j

2 (q)) for some q ∈ Z≥1.

Therefore, C2 is a representation of C1 if and only if there exists h : Q2 →
Q1, g : I1 → I2, and j ∈ Z≥1, such that
a) h(g(x)) = x, where ∈ I1;
b) h(q) ∈ Ω1 ⇐⇒ q ∈ Ω2, where q ∈ Q2;
c) f1(h(q)) = h(f j

2 (q)) where q ∈ Q2.

When reading this definition, one might wonder why the functions are not
specified to be surjective, injective or bijective. For both of the functions,
it might be because some states in C1 may not have an exact counterpart
in C2, or the computational states in C2 approximate the computational
states in C1. For instance, it is not possible to represent irrational numbers
such as π and e in a computer. This is because computers can only store
numbers using finite-length strings.

5

