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The case when the monoid is a group

Let G be a group (written multiplicatively). We are interested in BG, the
category of (set) representations of G. Objects in this category are pairs (X, µ)
where X is a set and µ : X × G → X is a right action of G on X — let’s
immediately agree to simply write x · g instead of µ(x, g). Recall that an action
must verify the axioms:

• x · 1 = x; and
• x · (gh) = (x · g) · h.

Arrows in this category are set functions between the underlying sets f : X → Y
that respect the group action: for all g ∈ G, we must have f(x · g) = f(x) · g.
Composition of arrows is just the usual composition of the underlying functions.

Let 1 denote the singleton set, and 2 the set with two elements, both with the
trivial action x · g = x. For any set X, the unique function X → 1 respects the
group action. Hence, the representation 1 is the terminal object in BG. We want
to show that the representation morphism ⊤ : 1 ↣ 2 induced by the inclusion
1 = {⊤} ⊆ {⊤,⊥} = 2 is the subobject classifier in the category BG.

Notice also that the pullback of any diagram X
f−→ B

g←− Y always exists in
BG, and is given by the usual pullback in Set with the obvious coordinate-wise
action. More precisely,

X ×B Y = {(x, y) ∈ X × Y | f(x) = g(y)},

with the action (x, y) · g defined to be (x · g, y · g). The existence of a terminal
object and all pullbacks is sufficient for (in fact, equivalent to) having all finite
limits in BG, and these may be constructed as limits of the carrier sets. In other
words, the forgetful functor U : BG→ Set preserves all finite limits.

Let m : S ↣ X be a (representative for a) subobject of X. The group G acts
on itself by multiplication on the right, and for any fixed element s ∈ S, we
have a morphism of representations λs : G→ S defined as λs(g) = s · g. We can
leverage these morphisms to prove the function underlying m must be injective.
Let s, t ∈ S be two elements of S such that m(s) = m(t). This relation, together
with the fact m preserves the group action, means that we have m ◦ λs = m ◦ λt.
Hence λs = λt. In particular, equality holds when these morphisms are evaluated
at the identity element of G, so s = t. Since, as we’ve just shown, the function
underlying any subobject must be injective, each subobject has a representative
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S ↣ X where S is a subset of X, with the group action on S being the group
action on X restricted to S. Therefore, any subobject of X in BG is (represented
by) a subset S of X which is stable by the group action, i.e. for all s ∈ S and
for all g ∈ G, we have s · g ∈ S.

Given a subrepresentation S ⊆ X, the characteristic set function χS : X → 2,
defined as χS(x) = ⊤ if and only if x ∈ S, respects the group actions. Indeed,
suppose x ∈ S; then, for all g ∈ G, we have χS(x · g) = ⊤ because S is closed
under the action of G, while χS(x) · g = χS(x) = ⊤ because the action on 2 is
trivial. On the other hand, the complement of S in X is also a subrepresentation
because G is a group, so when x /∈ S, we also have x ·g /∈ S for all g ∈ G, whence
χS(x · g) = ⊥ = χS(x) · g in this case.

Because S = χ−1
S (⊤), it follows that this is a pullback square:

S 1

X 2

!

χS

The only thing left to show for 1 ↪→ 2 to be a subobject classifier is that χS is
the only representation morphism such that the previous diagram is a pullback
diagram. Suppose ϕ : X → 2 is another one. Then S = ϕ−1(⊤), so that
ϕ(x) = ⊤ if and only if χS(x) = ⊤. Since there are only two possible values that
these functions can take, we must have χS = ϕ.

The previous discussion could have been made perhaps clearer by the use of
the forgetful functor U : BG→ Set, which, as we’ve seen, preserves limits. For
instance, pick some monic arrow m : S ↣ X. An arrow is monic if and only if
(1S , 1S) is a pullback for the pair (m, m). Therefore any functor which preserves
limits also preserves monic arrows. In our particular case, we see that U(m) is
a monic arrow in Set. It is known that monic arrows in Set are precisely the
injective functions. Since U(m) is the set function underlying the morphism of
representations m, we must have that m is injective, as we’ve shown in a more
roundabout way a couple of paragraphs ago. The uniqueness of the characteristic
function χS may also be proven quickly using the functor U : the image of any
pullback diagram in BG through U is also a pullback diagram in Set, and we
already know that the characteristic function is the unique set function such
that U(m) is the pullback of U(1)→ U(2) along it.

The general case

Most of our previous discussion carries through when we consider G = M to
be simply a monoid (not necessarily a group). We are interested in BM , the
category of (set) representations of the monoid M . As before, subobjects of
X are identified with subsets S ⊆ X that are stable under the monoid action,
and are called “subrepresentations”. The same arguments also give that 1 with
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the trivial action is the terminal object in BM , and the pullback of any pair of
arrows always exists (the forgetful functor still preserves finite limits).

In fact, from our previous discussion of group representations, there is only one
thing that changes: the characteristic function χS is not necessarily a morphism
of representations anymore. This breaks a lot of stuff, and we don’t have such
an easy time finding a subobject classifier. The fundamental reason of why the
characteristic function doesn’t respect the monoid action, is that the complement
of a subrepresentation may not be a subrepresentation: in the group case, the
complement was always a stable under the action, but for monoids in general
this is not true. A somewhat artificial example is given by the action of the
monoid (N, +) on the set of relative integers Z in the obvious way: for all z ∈ Z
and all n ∈ N, we define z · n to be z + n. Then, for any n ≥ 0, the set of all
integers in Z greater or equal to n is a subrepresentation, but the complement
of such a set is never a subrepresentation.

Let’s introduce some terminology. We say that a subset I of M is an ideal if,
for every i ∈ I and every m ∈ M , we have im ∈ I. Let X be a representation
of M , and let S be a subrepresentation of X. We say that an element m ∈M
kills an element x ∈ X (relative to S) when we have x ·m ∈ S. For any element
x ∈ X, let IS(x) be the set of elements in M which kill x relative to S. This set
IS(x) is an ideal in M . Notice that for all s ∈ S, we have IS(s) = M ; moreover,
when M is a group, we have IS(x) = ∅ for every x /∈ S. In fact, when M is a
group, there are only two ideals in M : the empty set ∅ and the whole group M .
However, when M is a monoid, it is not true that IS(x) = ∅ for all x /∈ S. For
instance, in our previous artificial example,

IN(−2) = {n ∈ N | n ≥ 2}.

We define Ω to be the set of all ideals of M . In our notation, for any subrepre-
sentation S of X, we have a function IS : X → Ω. We wish to define a monoid
action on Ω so that IS is a morphism of representations. In other words, we
want the ideal IS(x ·m) of elements that kill x ·m to be precisely IS(x) ·m. This
forces us to define, for all ideals I ⊆M and all m ∈M , the action

I ·m = {k ∈M | mk ∈ I}.

This action makes Ω into an object of BM and each function IS becomes a
morphism of representations. When M is a group, Ω reduces to the two-elements
set and IS reduces to the characteristic function χS . To continue this analogy
further, we define ⊤ : 1 ↣ Ω by sending the unique element of 1 to the top
element M ∈ Ω.

Because x ∈ S if and only if IS(x) = M , we see that S = I−1
S (M). Therefore,
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the following diagram is a pullback square:

S 1

X Ω

!

IS

Now we need to show IS is the only arrow such that the previous diagram is a
pullback square. Suppose ϕ : X → Ω is another one, and pick any x ∈ X. We
want to show that IS(x) = ϕ(x).

Let m be an element of IS(x), so that x · m ∈ S. By the commutativity of
the previous diagram with ϕ in place of IS , this means ϕ(x ·m) = M . Since ϕ
respects the monoid action, we have ϕ(x) ·m = M . Hence, by the definition
of the monoid action on Ω, we have {k ∈M | mk ∈ ϕ(x)} = M . In particular,
since 1 ∈M , we have m ∈ ϕ(x). Because m was an arbitrary element of IS(x),
we find that IS(x) ⊆ ϕ(x).

Consider T = x · ϕ(x) the subset of X defined as the set of elements of the form
x · i with i ∈ ϕ(x). Since ϕ(x) is an ideal of M , this subset T is stable under the
monoid action and thus is a subrepresentation of X. Moreover, for any t ∈ T , we
have ϕ(t) = M . Indeed, any t may be written in the form x · i for some i ∈ ϕ(x);
then, ϕ(t) (= ϕ(x) · i) is by definition the set of all k ∈M such that ik ∈ ϕ(x),
and this condition is always verified since ϕ(x) is an ideal. Thus the universal
property of the pullback gives us an inclusion T ⊆ S. In particular, all elements
m ∈ ϕ(x) have the property that x ·m ∈ S, so that ϕ(x) ⊆ IS(x).

The two previous paragraphs prove, by double inclusion, that IS(x) = ϕ(x).
Because x was an arbitrary element of X, this shows IS is the unique function
such that S is the pullback of 1 → Ω along IS . Therefore, 1 → Ω, defined by
sending the unique element of 1 to the top element M ∈ Ω, is the subobject
classifier in the category BM of representations of a fixed monoid M .
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