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Given an A-module M, we may build a sheaf of &-modules associated to M on
the affine scheme Spec A (with structure sheaf &). Often, this sheaf of modules
is constructed by first defining it on a basis, and then using the fact that a sheaf
on a basis uniquely defines a sheaf on the whole space.

In this post, I want to present a more “hands on” way of constructing that sheaf.
This is part of my quest to “reconcile” with elementary constructions (i.e. those
using elements instead of universal properties).
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As mentioned in the introduction, we will build a sheaf M , said to be the
sheaf associated to M on the affine scheme Spec A. This construction plays an
important role in algebraic geometry because it’s a “local model” for quasicoherent
sheaves.

Before we begin, we need the following technical definition. Let U be some open
set in Spec A, and let (sy)pev be an element of [, My,. We say that (sp)pev
is a system of compatible germs if, for every p € U, there exists an element
f € A having p € D(f) and D(f) C U, together with an element ¢ € M; such
that, for every q € D(f), we have t; = s,. Here ¢, is the further localization of ¢
via the canonical My — M.

Now, we use this notion to define our object of interest. Let U be an open set of
Spec A. To this open set we associate the data M (U), which is defined to be
the subset of all systems of compatible germs in HpeU M,.

Notice that M (U) is an abelian group by adding two systems component-wise,

using the abelian group structure on each M,. Moreover, we can give M (U) the
structure of an €(U)-module in the following way. For a scalar a € (U) and a

system (sp)pecv € M(U), we define

a- (sp)pev = (ap - $p)pev,

using the fact that 0, = A,, and that each M, is an Ay-module. We have a
couple of things to check before we can claim this actually works:

o First of all, we need to verify the resulting system is of compatible germs.
This is not too hard. Let p € U, and f € A and t € My be given for p
as in the definition of a system of compatible germs. There’s a canonical
Ar-module structure on M, which allows us to talk about ¢’ = ay -t. Here
ay is the image of a via the restriction map O(U) — O(D(f)) = Ay. It



doesn’t take much work to see that localizing further using My — M,
preserves the action on the module, in the sense that (t')q = aq - 54 for all
q € D(f) (hint: the localization map My — M corresponds to the obvious
map M ® Ay — M ® Aq; write the appropriate commutative diagram).
This shows everything works, and we have a system of compatible germs.

e Then, we need to check that this respects the axioms for a module action.
This is so because “taking the germ”, i.e. sending a to ayp, is a ring
homomorphism for each p.

If V C U is an inclusion of open sets, we may define the obvious restriction
M(U) — M(V), which simply sends a system (s,)pcr to the smaller system
(sp)pev. The only subtlety here is that it is not obvious the smaller system is of
compatible germs. However, that’s not too bad to show (hint: the distinguished
opens form a base for the topology on Spec A, and D(g) C D(f) implies the
existence of a canonical localization map My — M,). Notice that this restriction
map respects the module structure, in the sense that acting by &(U) followed
by restriction gives the same result as restriction followed by acting by &(V).

From the definition of the restriction maps as litteral restrictions, it’s obvious
that we have a presheaf on Spec A. We want to show it is a sheaf. It’s clear that
the identity axiom holds: if some section restricts locally everywhere to the zero
system, that means each component of the system is zero, so the system as a
whole is a bunch of zeroes.

We check the gluability axiom. Let U be an open set, and let {U;};,cr be a
family of open sets that cover U. Suppose we also have a family of systems
{(s})pev, Yier with each (s})pcv, € M(U;). Suppose further that these systems
agree on overlaps, in the sense that for each (i,5) € I?, we have

(S;)PEU’iﬂU]’ = (S{J)pGU,-ﬂUf
To glue all of these together, the obvious choice is to set

Sp = SE(P)
for each p € U, where ¢ : U — I is some choice function such that each p lies in
the chosen open set U,(,). Because the systems agree on overlaps, this definition
is independent of the actual choice function. It is also quite clear that this defines
a system of compatible germs over U, and that moreover its restriction to each
U; gives back the corresponding system (s},)pcu,-

So we have a sheaf! In fact, a sheaf of &-modules, since as we’ve remarked above
the restriction maps respect the sheaf of ring’s action. Notice that we haven’t
really used the fact each section of this sheaf is a system of compatible germs.
We have only demonstrated that this property carries over our constructions.
But this property will be useful in characterizing this sheaf via its stalks, which
is the object of the next section.



The stalks of M

For each p € Spec A, the stalk Mp is an Oy-module in the following way. Recall
that each element in Mp is an equivalence class [U, s] of pairs, with U an open
neighborhood around p and s € M(U), and where two pairs (U, s) and (U’, s')
are equivalent if and only if there exists V' an open neighborhood of p with
V CUNVU’ such that s|ly = ¢|y.

Given two pairs [U, s] and [V, t] in Mp, we may first find a small enough open W
around p such that W C U NV, and define, using the &(W)-module structure
on M(W)

(U, s] + [V, t] = [W, s|lw + tlw].

This is well-defined, as one can check quickly. Similarily, given [V,a] € &, and
[U,s] € M,, we again find a small enough open W and define

[Via] - U, s] = W, alw - s|lw].

Everything works well to give to Mp the structure of a 0y-module, as claimed.

We already know that the stalk at p of the structure sheaf & is isomorphic to
the localization Ap. In fact, a similar thing can be said of the sheaf M: it is
isomorphic to M, as we now show. Let [U, s] be an element of Mp. The element
s is a system of compatible germs over U, which we may write as (sp)per. Let
&([U, s]) be the element s, € M,. This makes a well-defined function

¢ M, — M,

This function is in fact an Oy-linear map (or, which is the same thing, an
Ap-linear map).

The map ¢ is injective: suppose ¢([U, s]) = 0. Because s is a system of compatible
germs, we can find some f € A and some t € M; such that p € D(f) C U, and
for each q € D(f), we have t; = sq. We may write ¢ as a fraction m/f™ where
m € M and n > 0 is some integer. Then, because the image of ¢ in M, is zero,
there must exist some s € A\ p such that

s-m=20 (1)

in M. Tt is clear that D(sf) is an open neighborhood of p which is contained
in D(f). Moreover, for any q € D(sf), the localization My — M, factorizes
through M. Now, the image of ¢ in M,y is

o stem
fom= G =0

which is equal to zero by equation (1) above. Hence t4 = 0 for every q € D(sf).
This shows that [U, s] = [D(d), 0], so ¢ is injective.



The map ¢ is also surjective. Pick some element m/f € M,. Now we consider
the fraction s = m/f as an element of My. It’s clear that the system (sq)qep(s)
is of compatible germs, and that ¢([D(f),s]) = m/f. Hence ¢ is surjective, as
we wanted.

Therefore ¢ is an isomorphism!

Remark: the isomorphism ¢ is the canonical one identifying M, with Mp as a

colimit, since we’ve implicitely used morphisms M (U) — M, in the construction
of ¢. In other words, this ¢ is what we get when we apply the universal property
of M, as a colimit; here we defined it in an elementary fashion.

Behavior over distinguished open sets

Just as we were expecting each stalk to “be” the localization at a point, just by
the way we defined things, we now expect M (D(f)) to be the smaller localization
Mjy. Moreover, for any inclusion of distinguished open sets D(g) C D(f), we

expect that the isomorphisms M(D(f)) & M  make the following diagram
commute:

M(D(f)) —— M

L]

M(D(g)) —=— M,
However, this is better seen via an alternative construction.

Another construction

Another construction is given as an exercise in FoAG (Ravi Vakil). For any

distinguished open set D(f), let M(D(f)) be the localization of M at the
multiplicative submonoid of the functions that do not vanish outside of D(f),
i.e. those g € A such that V(g) C V(f). This definition obviously depends only
on the set D(f) and not on f the function itself; this point is the main technical

advantage in defining M (D(f)) this way instead of directly stating that it is M.
We still have an isomorphism between M (D(f)) and My, however:

Lemma. For any section f € A, there is a canonical isomorphism of A y-modules

Here, the isomorphism being “canonical” means that M (D(f)) is the localization
of M at f, in the sense that both M (D(f)) and M, verify the same universal
property.

Proof. Recall that for any multiplicative submonoid S C A, we have a canonical

isomorphism of S~!A-modules between S™'M and M ®4 S~ A, under which
m/s corresponds to m ® (1/s). (As usual, “canonical” means “coming from



an universal property”, the “universal property” in this case being the tensor
product’s).

Let now S be the multiplicative submonoid of the functions ¢ € A having
V(g) CV(f). Because f € S, the section f is in particular an invertible element
of S~'A. Hence, the universal property of localization gives a canonical ring
homomorphism 6 : Ay — S~'A which sends a/f" to a/f" (the inverse of f in
S='A may be written as 1/f since f € S). On the other hand, any section
g € S verifies f € 1/(g), so the element g is invertible in A;. Again by the
universal property, there exists a canonical ring homomorphism in the other
direction S™'A — Ay, and it must be the inverse of f by usual abstract nonsense.
Therefore § is an isomorphism of rings (in fact, an isomorphism of A-algebras).

We give S™' M the structure of an A-module using 6 in the obvious way. We
obtain a chain of isomorphisms of A;-modules

My~ Mo Ay 22% Mo, ST Ax S IM = M(D(f))

under which m/f" € My corresponds to m/f" € M(D(f))7 and in the other

direction, the element m/g € M(D(f)) with ag = f™ for some integer n > 1
corresponds to am/f" € M;. B

Given an inclusion of distinguished open sets D(g) € D(f), we want to define a
restriction morphism from M(D(f)) to M( (g9)). Since we have V(f) C V(g),
by definition the section f is invertible in A (D(g)) (with inverse 1/f). Of course,
strictly speaking, we should say more formally that the map defined by m +— fm
is an automorphism of the A,-module M(D(g)), instead of saying that “f is
invertible in M(D(g))”. In reality, f is invertible in Ay, making A, into an
Ajy-algebra. Even better, the universal property of localization for modules gives
us an Aj-linear map
M(D(f)) = M(D(g))

which we call the restriction morphism. Since it’s obtained via a universal
property, everything is functorial. Moreover, recall that &(D(f)) = A; in a
canonical way, i.e. they verify the same universal property, and so each Ay-
module s an & (D(f))-module; also, the ring homomorphism Ay — A, alluded
to is precisely the restriction map for the sheaf of rings &, and the fact it makes
M(D(g)) into an Ay-module means precisely that for any h € &(D(f)) and any

x € M(D(f)), we have
(h-x)|p(g) = hlp(g) " %ID(g)-

This makes M into a presheaf of &-modules on the distinguished base.
The restriction M(D(f)) — M(D(g)) is the localization My — Mg, in the sense



that the following diagram commutes:

Lemma. The presheaf M is a sheaf on the distinguished base.

Proof. We start with the base identity axiom. Suppose {D(f;)}ics is some
covering of a distinguished open D(f); by quasicompacity, we may take I to be
a finite set {1,2,...,n}. Suppose m/g is some section of M over D(f) such that
(m/g)|p(s,) = 0 for each 1 < i < n. To verify the identity axiom, it suffices to
show m = 0 in My, given that m|p(s,) = 0 for each i.

As a section over D(f), m restricts to an element a;m/fF in Mjy,, and this
element is zero by hypothesis. Therefore, using the fact [ is a finite set, we may
choose a large enough integer N such that, for each 1 < ¢ < n, it holds in M
that (f;a;)Nm = 0.

Under the identification of D(f) with Spec Ay, each D(f;) corresponds to D(f;/1)
where f;/1 is the image of f; in A;. By laziness, we immediately stop writing
“/17. Because the sets D(f;) cover Spec A, the elements (fia;)" generate the
whole ring Ay (hint: D(f;) = D(a;f)). In particular, we may write 1 as a linear
combination:

L= hi(fia)" + ha(foa2)™ + - + b (fran)™,
where each h; is an element of A;. Because (f;a;)¥m = 0, we find that
m = hy(fia1)Vm + ha(faa)Nm + - + hy(fran)Nm = 0.
This shows m = 0 in My, so the identity axiom is verified.

Now, we show the base gluability axiom. Fix an arbitrary covering {D(f;)}iecr
of D(f), which may be infinite. Suppose we have a collection of sections
{mi/fFYier with m;/fF € M(D(f;)) such that these sections all “agree on
overlaps”, that is,

i — kj
(ma/ £ Dt = (mi /£ psory)
for every (i,j) € I

We break the proof in two parts: when [ is finite, and when it is not. First,
suppose [ is the finite set {1,2,...,n}. To simplify notation, set g; = fiki (notice
that D(g;) = D(f;)). Each section m;/g; restricts to the element g;m;/g;g; in
My, 4. The overlap condition then says that for each (i, j) € I?, there is some

integer k;; > 0 such that

(9ig5)" (gymi — gim;) = 0



holds in M. Using the finiteness of I, we may in fact pick a single integer N
such that

(9i9:)™ (g5mi — gimy) = 0.
We further simplify the situation by setting b; = gV m; and h; = gfv 1 We
have D(f;) = D(h;) and moreover m;/ ¥ = b;/h; in M(D(f;)). The previously

displayed equation becomes
hjb; = h;b;. (1)

Since D(h;) covers Spec Ay, we may express 1 as a linear combination
1:T‘1h1 +T2h2+"'+1"nhn (2)

where each r; € Af. We finally define the section that will be the “gluing” of
the sections we started with. It’s the section r over D(f) defined as

r=r1b1 +1rabo + -+ rpby,.
Notice that for every i € I,

hi’[‘ = Tlhibl —+ 'I"Qh,ibg + -+ Tnhibn

=r1h1b; + rohob; + - - - + rhnb; (by eqn. 1)
= (rihy +rohg + - + 1k )b;
=b;. (by eqn. 2)

Therefore, r becomes b; /h; when restricted to D(h;), which shows that r is the
gluing of our original sections m;/ flkl

We still have to show the gluability axiom holds when I is infinite. In that
case, use quasicompactness of D(f) to choose a finite subset J C I such that
{D(f;)}jes covers D(f), and do the same construction as before to obtain a
section r over D(f). Now pick some new index 4 which is not in J, and redo
the same construction with J U {i} to obtain yet again a section r’ over D(f).
But r and ' both restrict to the same sections over the covering afforded by J.
By the identity axiom, we must have r = r’, so that in particular r restricted
to D(f;) is m;/f¥". This means we can take 7, obtained by gluing only a finite
number of chosen sections, to play the role of the gluing of the whole collection
of sections. This shows the gluing axiom holds. B

As always, when we have a sheaf on a base, there’s a unique canonical way of
extending it to a sheaf on the whole space. In fact, this extended sheaf, if defined
using the concept of system of compatible germs, is exactly how we defined M
in the first section of this article.
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