
The many faces of Nakayama’s Lemma
written by rapha on Functor Network
original link: https://functor.network/user/2593/entry/932

In this article, I want to discuss four versions of Nakayama’s Lemma, ranging
from quite algebraic to quite geometric. I’ll prove that the first version is true,
and then show that all versions are logically equivalent.

As usual, all rings are commutative with unit.

Nakayama’s Lemma (I). Let M be an A-module of finite type and
let i be an ideal of A such that M = iM . Then there exists an element
x ∈ A such that xM = 0 and x ≡ 1 (mod i). (Equivalently, there
exists an element y ∈ i that acts on M as the identity, i.e. ym = m
for all m ∈ M .)

Proof. Write g1, g2, . . . , gn for the generators for M . The equation M = iM
implies that for each of those, there’s an equation

gi =
n∑

j=1
cijgj ,

where the cij are elements of i. By writing C for the square matrix (cij) and
g for the vector consisting of the generators, we can conveniently rewrite all of
these equations at once in a single matrix equation:

(I − C)g = 0.

Here I is the identity matrix of the appropriate size. Recall that for any square
matrix X has an adjugate matrix adj(X) whose entry at (j, i) is the determinant
of the submatrix obtained by removing the i-th row and the j-th column, times
(−1)i+j . In other words, the adjugate matrix is the transpose of the cofactor
matrix. Laplace expansion says that we always have the relation

adj(X)X = det(X)I.

In our case, therefore, we have

adj(I − C)(I − C)g = det(I − C)g = 0.

From this we see the element x = det(I − C) ∈ A anihilates all of the generators
gi. Hence x anihilates the whole of M , that is, xM = 0. Notice that the
expansion of the determinant gives a polynomial with constant term 1, and
all other monomials products of elements in i. Therefore, when passing to the
quotient A/i, all that’s left of x is 1.

Given such an x, one can choose y = 1 − x which is an element of i and
which verifies ym = (1 − x)m = m − xm = m for all m ∈ M . On the other
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hand, given such an y, one can choose x = 1 − y, so that x ≡ 1 mod i and
xm = (1 − y)m = m − m = 0 for all m ∈ M . ■

Notice this proof is constructive: not only does it assert the existence of the
element x, but it gives us a receipe to actually construct it. Let’s see a concrete
example. Take M = (Z/4Z)[i] the gaussian integers mod 4, seen as a Z-module.
This is finitely generated by the elements {1, i}. For the ideal, choose 3Z. For
any element a+bi of M , we can write it as 9a+9bi since 9 ≡ 1 mod 4. Therefore,
M = (3Z)M . In fact, 1 = 9 · 1 and i = 9 · i, so our matrix C above looks like 9I,
which is nine times the identity matrix. Therefore the element x we’re after is
det(−8I), which is 64. And indeed, 64M = 0 while 64 ≡ 1 mod 3.

Nakayama’s Lemma (II). Let M be an A-module of finite type
and let i be an ideal of A such that M = iM . If i is contained in the
Jacobson radical J(A) of A, then M = 0.

Proof that (I) ⇒ (II). Recall that the Jacobson radical J(A) is the intersection
of all maximal ideals in the ring. In this context, notice that any element x ≡ 1
mod i is invertible in A. To see this, suppose it is not. Then the principal ideal
(x) is contained in some maximal ideal m, and so i ⊆ m. Therefore x ≡ 1 mod m,
which is a contradiction with x ∈ m. Now Nakayama’s Lemma (I) guarantees
the existence of an element x ≡ 1 (mod i) such that xM = 0. We’ve just shown
that x must be invertible, whence M = 0.

Nakayama’s Lemma (III). Let M be an A-module of finite type,
let N be a submodule, and let i be an ideal of A which is contained
in the Jacobson radical J(A) of A. If N/iN → M/iM is surjective,
then M = N .

Proof that (II) ⇒ (III). Notice that M = N if and only if M/N = 0. The
reason I’m pointing this out is because that looks like the conclusion of (II); the
quotient of a module of finite type by any submodule is also of finite type (hint:
being of finite type means there’s a surjection An → M for some integer n), so
we reduced to problem to showing the equality of A-modules M/N = i(M/N).
Let m be any element of M . From the surjectivity hypothesis, there exists an
element n ∈ N such that n + iM = m + iM . In particular, we have m ∈ n + iM
so there exists an integer k ≥ 0 and elements i1, . . . , ik ∈ i and m1, . . . , mk ∈ M
such that

m = n + i1m1 + · · · + ikmk.

Passing m to the quotient M/N , we find m + N ∈ i(M/N). Since m was
arbitrary, this shows any element of M/N is in i(M/N). ■

Nakayama’s Lemma (IV). Let M be an A-module of finite type,
with (A,m) being a local ring, so M/mM is a finite-dimensional
vector space over A/m. Let f1, f2, . . . , fn be elements of M such that
their images in M/mM form a basis. Then these elements form a
minimal set of generators for M .
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Proof that (III) ⇒ (IV). Let N be the submodule of M generated by the
fi’s. From (III), we simply have to show that N/mN → M/mM is a surjective
morphism. But this is obvious! ■

I’ll come back later and add more explanations and examples.
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