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Let ϕ : B → A be an algebra. We say that an element a ∈ A is integral over B
if there exists some monic polynomial p ∈ B[x] such that p(a) = 0 in A. This is
a generalization of the concept of algebraic elements in the theory of fields. The
structure morphism ϕ is said to be an integral morphism if every element in
A is integral over B; if ϕ is an injection, it is said to be an integral extension.

Proposition. Let ϕ : B → A be an algebra. If there exists elements
b1, b2, . . . , bn ∈ B such that B = (b1, b2, . . . , bn), and if ϕ induces
integral morphisms Bbi

→ Aϕ(bi) for every 1 ≤ i ≤ n, then ϕ is
integral.

Proof. To simplify matters, we start by supposing that ϕ is an inclusion and
that B is a subring of A. Pick any a ∈ A; we want to show there exists a monic
polynomial with coefficients in B whose roots include a. By hypothesis, for any
1 ≤ i ≤ n, there exists a polynomial pi(x) with

pi(x) ∈ Bbi
· {xmi−1, xmi−2, . . . , x1, 1}

such that pi(a) = ami . We can multiply each of these equations by the appropri-
ate number of bi’s until we have “cleared the denominators”, which produces
new equations in A, so that

btii a
mi ∈ B · {ami−1, ami−2, . . . , a1, 1}.

By setting t = max{t1, t2, . . . , tn}, we have

btia
mi ∈ B · {ami−1, ami−2, . . . , a1, 1}.

We can also set m = max{m1,m2, . . . ,mn} and multiply each btia
mi by enough

copies of a to get it to be of the form btia
m, each multiplication by a increasing

the “degree” of the terms in its expression as a “polynomial in a” by one, so we
finally find

btia
m ∈ B · {am−1, am−2, . . . , a1, 1}.

Since (b1, b2, . . . , bn) = B, it is true that (bt1, bt2, . . . , btn) generate the whole of B as
well (hint: what is the form of a general element of any power of (b1, b2, . . . , bn)?)
Hence there exists elements ci ∈ B such that c1b

t
1 + c2b

t
2 + · · · + cnb

t
n = 1. Then

am = (c1b
t
1 + c2b

t
2 + · · · + cnb

t
n)am

so we find am ∈ B · {am−1, am−2, . . . , a1, 1}. This proves a is the root of a
polynomial with coefficients in B, i.e. a is integral over B. Since the element
a was arbitrary, we have shown ϕ is integral in the case it is the inclusion of
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a subring into A. In the general case, we have that ϕ is integral if and only if
the induced inclusion ϕ(B) → A is integral. Using this, together with the fact
that the morphism Bbi

→ Aϕ(bi) factorizes through ϕ(B)ϕ(bi), one can reduce
the general case to the one we just proved. ■

At the end of the previous proof, we used a special case of the following proposition
in order to show that the general case held by reducing it to the special case of
subring inclusion.

Proposition. Consider the following commutative diagram in the
category of commutative rings with unity CRing:

B

B′ A

ϕ
ψ

ϕ′

If the top arrow ϕ is integral, then so is the bottom arrow ϕ′. More-
over, if ψ is surjective, then the converse of the previous statement
is true as well. Note that injectivity of a morphism verifies the same
kind of statement, so if the top arrow ϕ is an integral extension, then
so is the bottom arrow ϕ′.

Because the proof is really straightforward, I decided to omit it. But the gist of
it is: given any a ∈ A, there’s a polynomial that kills it, and its coefficients look
like ϕ(b) for some b ∈ B; therefore commutativity gives coefficients that look like
ϕ′(ψ(b)), and reciprocally if ψ is surjective. ■

Some immediate consequences of the previous proposition: let ϕ : B → A be a
ring homomorphism; then

• (quotient of B) for J any ideal of B contained in kerϕ, the induced
morphism B/J → A is integral if and only if ϕ is;

• (localization of B) for T any multiplicative subset of B, the induced
morphism T−1B → A is integral when ϕ is.

Things are also well-behaved when taking quotients of A. More precisely, let I
be any ideal of A, and suppose B → A is an integral morphism. Then B → A/I
is also integral. Indeed, pick any element a ∈ A/I; because ϕ is integral, there
exists an integer n ≥ 0 and elements bi ∈ B such that we have

an + ϕ(bn−1)an−1 + · · · + ϕ(b1)a1 + ϕ(b0) = 0.

Hence simply passing this equation to the quotient gives us an expression for
zero as a sum of powers of a, with coefficients ϕ(bi). This shows the composite
ring homomorphism B → A/I is integral, as we wanted.

Things are less well-behaved when localizing on A. More precisely, there exists
a multiplicative subset S ⊆ A and an integral morphism B → A such that the
composite morphism B → S−1A is not integral. Here’s an example: choose
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A = B = κ[t] the polynomials with coefficients in a field κ, and take the identity
as the (obviously integral) morphism B → A. Now I will show that κ[t](t) is not
integral over κ[t]. To do this, I need to exhibit some element that is not integral.
After testing things out, I found that 1/(1 − t) is probably the simplest element
which is not integral over κ[t]. Here’s a proof by contradiction: suppose it is
integral, so there exists an integer n ≥ 0 and polynomials pi(t) ∈ κ[t] such that(

1
1 − t

)n

+ pn−1(t)
(

1
1 − t

)n−1
+ · · · + p1(t) 1

1 − t
+ p0(t) = 0.

Putting everything over a common denominator and rewriting, we obtain

1 + (1 − t)pn−1(t) + · · · + (1 − t)n−1p1(t) + (1 − t)np0(t)
(1 − t)n = 0.

Because κ[t] is an integral domain, this equality in κ[t](t) implies the following
equality in κ[t]:

1 + (1 − t)pn−1(t) + · · · + (1 − t)n−1p1(t) + (1 − t)np0(t) = 0.

Evaluating the left-hand side at t = 1 yields 1 = 0, which is absurd because κ[t]
is not the trivial ring. Therefore the rational expression 1/(1 − t) cannot be an
integral element of κ[t](t) over κ[t], whence the ring homomorphism κ[t] → κ[t](t)
is not integral.

It is still possible to obtain an integral morphism by localization at A and B at
the same time, in some cases: if ϕ : B → A is an integral morphism and if T ⊆ B
is a multiplicative subset of B, then the induced morphism T−1B → ϕ(T )−1A
is also an integral morphism. The proof is as follows. Pick any a/ϕ(t) in the
localized ring ϕ(T )−1A. As usual, the fact ϕ is integral means there exists an
integer n ≥ 0 and elements bi ∈ B such that

an + ϕ(bn−1)an−1 + · · · + ϕ(b1)a+ ϕ(b0) = 0.

Denote by ϕ̃ the induced morphism T−1B → ϕ(T )−1A. Passing the previous
equation to the localization and dividing out by ϕ(t)n gives an equation(

a

ϕ(t)

)n

+ ϕ̃

(
bn−1

t

) (
a

ϕ(t)

)n−1
+ · · · + ϕ̃

(
b1

tn−1

)
a

ϕ(t) + ϕ̃

(
b0

tn

)
= 0.

This shows ϕ̃ is an integral morphism, as we wanted. ■

Proposition. Let ϕ : B → A be an algebra. An element a ∈ A
is integral if and only if it is contained in a finite subalgebra of A.
Consequently, if A itself is a finite algebra, then ϕ is an integral
morphism.

Proof. If a is integral, then it satisfies a monic polynomial of degree n with
coefficients in B. Hence B · {an−1, . . . , a, 1} is a B-submodule of finite type

3



which is closed under multiplication (i.e. a finite subalgebra) and which contains
a. On the other hand, suppose a is contained in a finite subalgebra B generated
by elements m1,m2, . . . ,mn ∈ B. For each 1 ≤ i ≤ n, write ami as the linear
combination

∑n
j=1 bijmj , so we have the matrix equation

b11 b12 . . . b1n
b21 b22 . . . b2n
...

... . . . ...
bn1 bn2 . . . bnn



m1
m2
...
mn

 = a


m1
m2
...
mn

 .

We write C for the square n×n matrix, and m for the vector. Then the previous
equation may be written equivalently as (aI − C)m = 0. We would like to
conclude that the determinant det(aI − C) is zero, but we can’t do that in
general: a matrix is invertible (in a general ring) if and only if its determinant
is invertible. Thus we know the determinant is not invertible, but we can’t go
further without the following trick. Recall that any square matrix M has an
adjugate matrix adj(M) such that adj(M)M = det(M)I. In our case, multiplying
our equation on both sides by adj(aI − C) yields

det(aI − C)m = 0.

The determinant det(aI −C) is an element of B that kills every generator mi of
B. Therefore, it kills every element in B; in particular, it kills 1 ∈ B so we get
det(aI − C) = 0. Expanding out the determinant yields an integral expression
for a with coefficients in B. ■

The previous result is quite practical. For instance, as a sort of complement of
the earlier proposition with the commutative diagram, we use it to show integral
morphisms behave well under composition:

Proposition. Let ϕ : B → A and ψ : C → B be two integral
morphisms. Then their composition ϕ◦ψ is also an integral morphism.

Proof. Suppose first that ϕ and ψ are actually inclusions of rings, so that
C ⊆ B ⊆ A. Pick any element a ∈ A. Because A is integral over B, there exists
an integer n ≥ 0 and elements bi ∈ B such that

an = bn−1a
n−1 + · · · + b1a+ b0.

Likewise, since each bi is integral over C, one can choose a large enough integer
m ≥ 0 such that, for all 0 ≤ i ≤ n−1, the power bmi can be expressed as a C-linear
combination of strictly smaller powers of bi. Now consider the C-submodule A′

of A defined as

A′ = C · {akbe1
1 b

e2
2 · · · ben

n | 0 ≤ k ≤ n− 1, 0 ≤ ei ≤ m− 1}.

Now I claim A′ is actually a C-subalgebra, i.e. it is closed under multiplication.
This fact can be verified by showing that the product of any two generators is
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again an element of A′. It is clear that the product of any two generators has
the form akbe1

1 b
e2
2 · · · ben

n since we work in commutative rings, but the exponents
could be “too large”. However, this is not a problem because of the following
algorithm. If k is larger than n− 1, we can rewrite ak as a B-linear combination
of powers of a that are small enough, and each coefficient of that B-linear
combination is a product of the bi’s. After distributing everything, we get a new
C-linear combination, where each monomial has power of a not larger than n− 1.
If, after this operation, a monomial has a power of bi larger than m − 1, we
apply the same idea to write it as a C-linear combinations of smaller powers of
bi. This roughly shows that A′ is a C-subalgebra, and it is clearly finite because
it’s defined using a finite number of generators. Since it contains a, the previous
proposition ensures a is integral over C. Because a was an arbitrary element of
A, the claim is proven in the case ϕ and ψ are ring inclusions. The general case
uses the same idea, so I won’t bother writing it down. ■
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