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I’m planning on writing a series of posts that explore the theory and applications
of characteristic classes in algebraic topology, following the book from Milnor
and Stasheff. Here I start with the appendix A, where homology is discussed
and basic theorems are laid out. This post will also serve me well as a quick
reminder, since I keep forgetting small details and ideas regarding (singular)
(co)homology. Many results and explanations can be found in Hatcher’s book.

Singular homology
The standard n-simplex is the set ∆n ⊆ Rn+1 consisting of all (n + 1)-tuples
(t0, t1, . . . , tn) with the following two properties:

• for each i, we have ti ≥ 0;
• and

∑
ti = 1.

The second property says that points in ∆n are such that the dot product of the
vector (t0 − 1, t1, . . . , tn) with the vector n = (1, 1, . . . , 1) is zero, i.e. ∆n lies in
the n-hyperplane with normal n, translated by one unit in any direction. Hence
each ∆n is an affine space of dimension n. For instance:

• ∆0 is a single point 1 ∈ R;
• ∆1 is the line segment in R2 going up from (1, 0) to (0, 1);
• ∆2 is the (filled) triangle in R3 having as vertices the three standard basis

vectors;
• etc.

As a special case, we also define ∆−1 to be the empty set.

In general each ∆n has (n+1) vertices, which are the points in ∆n corresponding
to the standard basis vectors. Another way to talk about the standard n-simplex
is to say it is the convex hull of the standard basis vectors in Rn+1. We can
label each vertex with an integer i, where i is the (zero-based) position of the
unique 1 in the standard basis vector corresponding to that vertex.

For each 0 ≤ i ≤ n, we have a way to talk about the i-th side of a standard
n-simplex via the function ϕi : ∆n−1 → ∆n, which is defined as

ϕi(t0, . . . , t̂i, . . . , tn) = (t0, . . . , ti−1, 0, ti+1, . . . , tn).

(As usual the hat over a variable in an enumeration means that variable is
actually omitted from the enumeration.) Thus the i-th side is the convex hull
of all vertices of ∆n that are not labelled with i. Notice that ϕi is actually an

1



affine embedding. Moreover, it gives an orientation to each side of a standard
simplex: the orientation is positive i is even, and negative otherwise.

Again, as a special case, we define the 0-th side of ∆0 to be the unique function
ϕ0 : ∆−1 → ∆0 from the empty set (i.e. ∆−1) to the singleton {1} (i.e. ∆0).

Let X be any topological space. A singular n-simplex in X is a continuous
map from ∆n to X. The idea here is to identify such a map with its image;
since there are no restrictions on what this image may look like except that
nearby points stay nearby (continuity), there could be collapsing or other weird
things happening to ∆n when viewed through the map. That’s why it’s called a
singular simplex.

For 0 ≤ i ≤ n, the i-th face of a singular n-simplex σ : ∆n → X is the singular
(n − 1)-simplex given by

σ ◦ ϕi : ∆n−1 → X.

For each n ≥ 0, the singular chain group Cn(X; Λ) with coefficients in a
commutative ring Λ is the free Λ-module having one generator for each singular
n-simplex σ in X. In other words, Cn(X; Λ) consists of the formal Λ-linear
combinations of n-simplices in X:

Cn(X; Λ) =
⊕

σ:∆n→X

Λ.

Notice that this is a module, even though we use the term group. Just another
fun little opportunity to be confused down the line. When n < 0, the singular
chain group is defined to be the zero module. In the special case Λ = Z, the
singular chain group at n is the free abelian group on the singular n-simplices.

The singular chain group is the algebraic realization of how “sticking triangles
on a space” works. If Λ = Z/2Z, then glueing two copies of the same simplex
one on top of another means they “cancel out”, and when only one of their
sides are overlapping, these overlapping sides also cancel out; you obtain a
square in the space instead of two triangles. Many geometric arguments use the
fact that sides on the boundaries cancel out. The precise meaning of this in
Cn(X; Λ) is given by the boundary homomorphism, which is a Λ-linear map
∂ : Cn(X; Λ) → Cn−1(X; Λ) defined as

∂σ =
n∑

i=0
(−1)i(σ ◦ ϕi).

This definition is made for n ≥ 1; if n ≤ 0 we simply say ∂ = 0. The sign in
the formula represents the orientation of each side (recall: the i-th side has
positive orientation when i is even, and negative orientation otherwise). This is
done because we need “identical sides” that are “going in opposite directions” to
cancel out in many geometrical arguments. For instance, the boundary of a tiling
of some region of space by triangles (i.e. a sum in the singular chain group C2)
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should be the boundary of the region, not the sum of the individual boundaries
of each triangle (for instance, think about the proof of Stoke’s formula).

An important property of the boundary homomorphism is this: ∂2 = 0. Intu-
itively: the boundary of the boundary is empty. Think of ∆2, which is a (filled)
triangle, and think about it as a singular simplex in R2 (maybe via the projection
on the plane in which ∆2 lies). Its boundary is the formal sum of three line
segments. These segments are all perfectly lined up so that the end of the one is
the start of the next: they form a cycle. Moreover, the point corresponding to
the end of one segment has the opposite orientation to the point corresponding
to the start of the next segment, so they cancel out. Since these endpoints are
the boundaries of each of the three line segment, and since they all cancel out,
the boundary of the boundary is effectively zero.

In fact, the boundary of a singular chain is zero precisely when all of the
summands in the chain are arranged so that their boundaries all cancel out, that
is, when they form a cycle and “enclose” some region of space. We define the
n-cycles to be the set of all such chains:

Zn(X; Λ) = ker(∂ : Cn(X; Λ) → Cn−1(X; Λ)).

The n-boundaries is the set of all chains that can be expressed as the boundary
of some (n + 1)-dimensional singular chain:

Bn(X; Λ) = im(∂ : Cn+1(X; Λ) → Cn(X; Λ)).

The identity ∂2 = 0 says we have a containment of Λ-submodules

Bn(X; Λ) ⊆ Zn(X; Λ).

Hence we can consider the n-th singular homology group

Hn(X; Λ) = Zn(X; Λ)/Bn(X; Λ).

The homology group captures in algebra an intuitive spatial fact. We have seen
that any cycle “encloses” a region of space, by sticking together simplices of
the same dimension along their boundaries until none are “left alone” (each
boundary has a matching, opposite, boundary). Now suppose a given cycle is
itself the boundary of some higher-dimensional simplex ∆. Now the cycle can
“move inside” ∆ without breaking appart, shrinking until it becomes a single
point. If a cycle is not a boundary, it means that something about the space
X obstructs the construction of a simplex ∆ which would have the cycle as
its boundary: there’s a hole in X. Notice that the condition of continuity on
singular simplices is essential here: the hole would basically force any ∆ to be
torn appart if it were to have the cycle as a boundary, breaking continuity. In this
way, the homology construction detects holes in X and gives useful information
about them. This technology could be used to make a precise definition of what
a “hole” in a topological space is: a hole is a generator for the homology group.
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Some abstract nonsense

Homology is a functor from the category of topological spaces up to homotopy, to
the category of Λ-modules. The source category’s objects are topological spaces,
and the arrows are equivalence classes of continuous maps, where two maps
are considered to be the same when they are homotopic. Since I always forget
the details of what this means, here they are: consider two continuous maps
f, g : X → Y between topological spaces. We say they are homotopic when
there exists another continuous map H : X × [0, 1] → Y (called an homotopy)
such that H(−, 0) = f and H(−, 1) = g. In the source category we’re interested
in, an arrow is a actually a set of continous maps, all homotopic to each other.

Functoriality gives us the following for free: if two spaces are homotopic, then
they have isomorphic homology groups. In particular, since Rn is contractible
(i.e. homotopy equivalent to a point) for any n ≥ 0, we have a concrete homology
computation: for any i ≥ 1,

Hi(Rn; Λ) ∼= Hi({p}; Λ) = 0.

(It’s easy to compute homology of a point: all singular simplices are the same!)
When i = 0, things are a bit weird, and fixing weird things is the purpose of the
next section.

Reduced homology

There’s a technical point to address here. Consider what happens when we take
the space X to be a single point p and we compute the 0-th homology group.
Since singular 1-simplices are continuous maps ∆1 → {p}, all 1-simplices are
actually the same. Hence they are all cycles, so by definition their boundaries
are zero: B0({p}; Λ) = 0. Therefore H0({p}; Λ) ∼= Z0({p}; Λ). However, we set
∂ to be the zero map for all n ≤ 0 earlier, so H0({p}; Λ) is C0({p}; Λ), the free
module generated by all 0-simplices. Since they are all the same, there’s actually
only one generator, so H0({p}; Λ) ∼= Λ. For technical reasons, it’s better for the
zeroth homology of a point to be the zero module; also, it makes sense intuitively,
since we expect the homology to measure holes in a space, and we feel a point
doesn’t have holes.

There’s an easy fix to this. Instead of having ∂ = 0 at degree zero, we set
C−1(X; Λ) to be Λ (recall: we made a special case above, where the only singular
(−1)-simplex is the unique function from the empty set ∆−1 to X; then the
chain group of degree −1 has to be the free Λ-module generated by that single
(−1)-simplex), and now we may define ∂ at degree zero with the same formula
we used for positive degrees. For any singular 0-simplex σ : ∆0 → X, we now
have

∂σ = σ ◦ ϕ0,

which is the unique function from the empty set to X, and which is identified
with 1 ∈ Λ. Therefore ∂ corresponds to the identity map on Λ. This means
Z0({p}; Λ) is trivial, and so is this modified homology at degree zero.
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This modified homology is called reduced singular homology and its homology
groups are denoted with a tilde:

H̃i(X; Λ).

Since the only modification happens at degree zero, we have

H̃i(X; Λ) = Hi(X; Λ)

for each i ≥ 1. In general, we see that for any 0-chain a1σ1 + · · · + akσk (these
are just formal linear combinations of points in X) we have

∂0(a1σ1 + · · · + akσk) =
k∑

i=1
ai ∈ Λ.

There is an easy way to get from unreduced homology to reduced homology: at
all positive dimensions the groups are the same, and at dimension zero we have
the equation

H0(X; Λ) ∼= H̃0(X; Λ) ⊕ Λ.

(Hint: think about what happens if X is path-connected, and which 0-chains are
boundaries.)

Mayer-Vietoris sequence

A great tool for computing with homology. It works for “unreduced” and reduced
homology (just replace H with H̃ everywhere). Let A and B be two subsets of
X such that their interior cover X (and for reduced homology, we also want their
intersection to be nonempty). Then there is a long exact sequence in homology

. . . Hi+1(X) Hi(A ∩ B) Hi(A) ⊕ Hi(B) Hi(X) . . .

We can use this to compute the homology of the n-sphere Sn. Let A be the
“open north cap” and B be the “open south cap”, i.e. A and B are contractible
open sets in Sn such that their intersection is homotopic to the “equator” Sn−1.
Then the reduced Mayer-Vietoris sequence looks like

. . . H̃i+1(Sn) H̃i(Sn−1) H̃i(A) ⊕ H̃i(B) H̃i(Sn) . . .

Because A and B are contractible, the middle term above is zero for all i ∈ Z, so
we have a collection of isomorphisms H̃i(Sn) ∼= H̃i−1(Si−1). Since H̃0(S0) = Λ
and zero otherwise, we find by induction on n the following calculation:

H̃i(Sn; Λ) =
{

Λ if i = n

0 otherwise.
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Relative homology

We now consider pairs (X, A) where A is any subspace of X (including the empty
subspace, and the full subspace). We’re going to look at homology “modulo A”,
in the sense that any singular simplex whose image lies completely in A is going
to be considered as “completely collapsed”, i.e. zero as a chain. Formally, we
define the relative n-th singular chain group to be

Cn(X, A; Λ) = Cn(X; Λ)/Cn(A; Λ).

Because ∂ carries chains in A to chains in A, we obtain a chain complex “modulo
A” and we can define relative homology as

Hn(X, A; Λ) = Zn(X, A; Λ)/Bn(X, A; Λ).

Any pair (X, A) gives an exact sequence of Λ-modules

0 Cn(A; Λ) Cn(X; Λ) Cn(X, A; Λ) 0.

From the general theory of abelian categories, we obtain from it a long exact
sequence in homology:

. . . Hn−1(A; Λ) Hn−1(X; Λ) Hn−1(X, A; Λ)

Hn(A; Λ) Hn(X; Λ) Hn(X, A; Λ)

Hn+1(A; Λ) Hn+1(X; Λ) Hn+1(X, A; Λ) . . .

This long exact sequence also exists for reduced homology.

An important tool for working with homology is the excision theorem: let A
and B be two subspaces of X such that their interior cover X; then the inclusion
(B, A ∩ B) ↪→ (X, A) induces isomorphisms

Hn(B, A ∩ B) ∼= Hn(X, A)

for all n ∈ Z. Equivalently, for any subspaces Z ⊆ A ⊆ X such that the closure
of Z is contained in the interior of A, the obvious inclusion induces isomorphisms

Hn(X − Z, A − Z; Λ) ∼= Hn(X, A; Λ).

This version of the statement is what justifies the name “excision”, since it
gives us conditions under which we may excise Z from X without changing the
homology groups. That is insanely powerful. For instance, here’s a proof of
the so-called Brouwer’s invariance of domain: if U ⊆ Rm and V ⊆ Rn are two
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nonempty homeomorphic open sets, then m = n. The idea of the proof is to look
at what happens locally around a point, so we define local homology groups
around some point p ∈ X by

Hn,p(X; Λ) = Hn(X, X − {p}; Λ).

Back to the proof. Let f : U → V be a homeomorphism and pick some point
x ∈ U . Then, by excision, we have Hn,x(U) ∼= Hn,x(Rm). (Hint: in the excision
theorem, pick A to be the complement of {x} and pick B to be U). The long
exact sequence for the pair (Rm,Rm − {x}) looks like:

. . . Hi−1,x(Rm) Hi(Rm − {x}) Hi(Rm) Hi,x(Rm) . . .

We saw that Hi(Rm) ∼= 0 for every i ∈ Z. Hence we have a collection of
isomorphisms

Hi,x(Rm) ∼= Hi+1(Rm − {x}).
Moreover, because Rm−{x} is homotopic to Sm−1, the homology Hi+1(Rm−{x})
is Λ for i + 1 = m and zero otherwise. This gives the following calculation: the
homology Hi,x(Rm) is zero if and only if i = m. The same reasoning applied to
V and h(x) gives the same calculation, and since h induces an isomorphism of
homology groups, we must have m = n.

Singular cohomology
Since all elements in a Λ-module M may be identified with the Λ-linear maps
Λ → M , we may dualize and consider linear maps of the same kind but having
opposite polarity: this we do. The n-th cochain group is the dual module

Cn(X; Λ) = HomΛ(Cn(X; Λ), Λ),

consisting of all Λ-linear maps going from the singular chain group into its ring
of scalars. A cochain is just a way to (linearly) compute a scalar quantity from a
singular chain. There’s an analogy to be made with geometry: you have points in
some affine space (singular chains), and you have coordinates (cochains), which
in a way compute a number from each point. In geometry, there’s a strong link
between points and coordinates: studying algebraic varieties is essentially the
same as studying rings of coordinates, which are basically rings of polynomial
functions from the space to the underlying field. However, it is easier to work
with coordinates than sets of points, because there’s a natural ring structure.
Hence, if this analogy is to hold, one would expect a link between homology
and cohomology; moreover, it should be easier to work with cohomology than
homology. And so it is.

The value of a cochain c on a chain γ will be denoted ⟨c, γ⟩ and is defined as

⟨c, γ⟩ = c(γ) ∈ Λ.

Obviously ⟨−, −⟩ : Cn(X; Λ) × Cn(X; Λ) → Λ is Λ-bilinear.
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The coboundary of a cochain c ∈ Cn(X; Λ) is defined to be the cochain
δc ∈ Cn+1(X; Λ) whose value on each (n + 1)-chain α is determined by the
identity

⟨δc, α⟩ + (−1)n⟨c, ∂α⟩ = 0.

Hence δ is, up to sign, the dual of ∂, in the sense that for any cochain c, the
cochain δc is, up to sign, the pullback of c along ∂:

Cn+1(X) Cn(X)

Λ
δc

∂

c

This sign convention is used in Milnor and Stasheff’s book, but not in Hatcher
for instance, where he defines δ as precisely the dual of ∂. Since my goal is to
understand characteristic classes, I’m going to keep the sign convention used in
the M&S book.

Again, this definition has intuitive content: since c is able to “measure”, or “give
coordinates”, any n-chain, then it should be possible to obtain a way to measure
(n + 1)-chains α by combining measures for the boundaries of α.

The coboundary homomorphism, just like its dual friend, verifies δ2 = 0. There-
fore, if we define n-cocycles to be

Zn(X; Λ) = ker(δ : Cn(X; Λ) → Cn+1(X; Λ))

and n-coboundaries to be

Bn(X; Λ) = im(δ : Cn−1(X; Λ) → Cn(X; Λ),

then we may also define the n-th singular cohomology group by

Hn(X; Λ) = Zn(X; Λ)/Bn(X; Λ).

Universal coefficient theorem for cohomology

Instead of using the ring Λ as coefficients, we may also use any Λ-module M . If
Λ is a principal ideal domain, then there is a natural split exact sequence

0 Ext1
Λ(Hn−1(X; Λ), M) Hn(X; Λ) HomΛ(Hi(X; Λ), M) 0.h

The map h is the canonical map sending a cohomology class represented by a
cochain c, to the map which sends any homology class represented by a chain α
to the element ⟨c, α⟩ of Λ.

This exact sequence measures how close the cohomology group is to be the dual
of homology.
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