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The goal of this short post is to convince myself that the ideal generated by
Sym+ inside of C[x, y] can be more simply described as the ideal generated by
xy and x + y, i.e.

⟨Sym+⟩ = ⟨xy, x + y⟩.

As a shorthand, set A = C[x, y]. The ring A is graded:

A =
∞⊕

d=0
A(d),

where A(d) is the C-module consisting of the homogeneous polynomials of degree
d:

A(d) = C{xayb | a + b = d}.

In general, a polynomial is said to be symmetric when it is invariant under any
permutation of the variables. In our case, a polynomial p(x, y) ∈ A is symmetric
when p(x, y) = p(y, x). For instance, x3 + y3 + 2xy is symmetric while x + y2

is not. The product and difference of two symmetric polynomials is also a
symmetric polynomial. Also, 1 is a trivial example of a symmetric polynomial.
Hence the set of all symmetric polynomials is a subring of A, which we denote
by Sym. This subring is naturally graded:

Sym =
∞⊕

d=0
Sym(d)

where Sym(d) = Sym ∩A(d) is the set of symmetric homogeneous polynomials of
degree d.

Now we restrict our attention to the set of symmetric polynomials which have 0
as a root. This is exactly the set

Sym+ =
∞⊕

d=1
Sym(d) .

Let’s prove that every element in Sym+ can be written as an A-linear combination
of xy and x + y, which will show the first equation between generated ideals at
the top of this post holds. Concretely, every element p(x, y) in Sym+ can be
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written as some sum of homogeneous elements, all of degree at least one. If I
can show that each of these homogeneous elements can be written in the form

[some polynomial] · (x + y) + [some other polynomial] · xy,

then simply by grouping together terms in x + y and terms in xy and factoring
out, I will obtain an expression for p(x, y) as an A-linear combination of x+y and
xy. So we can reduce the problem to p(x, y) being an homogeneous polynomial
of degree d ≥ 1. We can even do more. Recall that Sym(d) is a vector space over
C, and if we can show every basis element can be written as a linear combination
like we want, then we have shown p(x, y) can be written like that as well. Hence
we have reduced the problem to showing that for any d ≥ 1, some basis of Sym(d)

can be written as an A-linear combination of x + y and xy.

Let’s chose the m-basis. I hope to write some post about this basis. However
I want to keep this one short, so here are the basics for future quick recalling.
Let’s say that a partition (French: partage) of some natural number n ≥ 0 is
some list λ = (λ1, . . . , λk) of natural numbers with λ1 ≥ · · · ≥ λk ≥ 0 and such
that λ1 + · · · + λk = n. The integer k is the numbers of parts of λ, which we
may write as ℓ(λ). To indicate that λ is a partition of n, we write λ ⊢ n.

Fix some degree d ≥ 1. To build a basis for Sym(d), pick some λ ⊢ d with
ℓ(λ) = 2 (if needed, extend the partition with a second part of zero length). For
instance, if d = 3, then possible choices of partition are (3, 0) and (2, 1). Now
write

mλ = xλ1yλ2 + xλ2yλ1 .

Collecting these polynomials for all possible partitions of d gives you a basis for
Sym(d). Note that what I’ve just written is a special case of the more general
construction using the Reynolds symmetrization operator when there are more
than two variables. Anyways, in the d = 3 example, the basis is given as
{x3 + y3, x2y + xy2}.

Let’s get back to our original problem. Recall: fixing a degree d ≥ 1, we need to
show that each mλ can be written in the form p(x, y)(x + y) + r(x, y)xy for some
polynomials p and q that obviously depend on mλ. Here’s the argument, which
is quite simple after all this yapping. Suppose λ has two non-zero parts (eg.
λ = (2, 1)). Whatever mλ is, it is garanteed by construction that each monomial
in mλ is divisible by both x and y; hence we can factor xy out of each monomial
to obtain

m(λ1,λ2) = xy · m(λ1−1,λ2−1).

For instance,

m(2,1) = x2y + xy2 = xy(x + y) = xy · m(1,0).

What if λ has a single non-zero part? Then mλ = m(d) looks like this:

m(d) = xd + yd.
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Newton to the rescue:

xd + yd = (x + y)d −
d−1∑
i=1

(
d

i

)
xd−iyi

= (x + y)d − xy

d−1∑
i=1

(
d

i

)
xd−i−1yi−1.

So we win. The only subtelty here is, what if d = 1 so then inside of the sum we
have a x−1 term? Well, if d = 1 then the sum goes from i = 1 to i = 0, which
means by convention that it’s the empty sum, which is zero. Anyways, the case
d = 1 can be done separately (hint: it’s trivial).
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