A simpler description for the ideal generated by the symmetric polynomials in two variables

written by rapha on Functor Network original link: https://functor.network/user/2593/entry/905

The goal of this short post is to convince myself that the ideal generated by Sym^+ inside of $\mathbb{C}[x,y]$ can be more simply described as the ideal generated by xy and x+y, i.e.

$$\langle \text{Sym}^+ \rangle = \langle xy, x + y \rangle.$$

As a shorthand, set $A = \mathbb{C}[x,y]$. The ring A is graded:

$$A = \bigoplus_{d=0}^{\infty} A^{(d)},$$

where $A^{(d)}$ is the \mathbb{C} -module consisting of the homogeneous polynomials of degree d:

$$A^{(d)} = \mathbb{C}\{x^a y^b \mid a+b=d\}.$$

In general, a polynomial is said to be symmetric when it is invariant under any permutation of the variables. In our case, a polynomial $p(x,y) \in A$ is symmetric when p(x,y) = p(y,x). For instance, $x^3 + y^3 + 2xy$ is symmetric while $x + y^2$ is not. The product and difference of two symmetric polynomials is also a symmetric polynomial. Also, 1 is a trivial example of a symmetric polynomial. Hence the set of all symmetric polynomials is a subring of A, which we denote by Sym. This subring is naturally graded:

$$\operatorname{Sym} = \bigoplus_{d=0}^{\infty} \operatorname{Sym}^{(d)}$$

where $\mathrm{Sym}^{(d)}=\mathrm{Sym}\cap A^{(d)}$ is the set of symmetric homogeneous polynomials of degree d.

Now we restrict our attention to the set of symmetric polynomials which have 0 as a root. This is exactly the set

$$\operatorname{Sym}^+ = \bigoplus_{d=1}^{\infty} \operatorname{Sym}^{(d)}.$$

Let's prove that every element in Sym^+ can be written as an A-linear combination of xy and x+y, which will show the first equation between generated ideals at the top of this post holds. Concretely, every element p(x,y) in Sym^+ can be

written as some sum of homogeneous elements, all of degree at least one. If I can show that each of these homogeneous elements can be written in the form

[some polynomial]
$$\cdot (x + y) +$$
[some other polynomial] $\cdot xy$,

then simply by grouping together terms in x + y and terms in xy and factoring out, I will obtain an expression for p(x,y) as an A-linear combination of x+y and xy. So we can reduce the problem to p(x,y) being an homogeneous polynomial of degree $d \ge 1$. We can even do more. Recall that $\operatorname{Sym}^{(d)}$ is a vector space over \mathbb{C} , and if we can show every basis element can be written as a linear combination like we want, then we have shown p(x,y) can be written like that as well. Hence we have reduced the problem to showing that for any $d \ge 1$, some basis of $\operatorname{Sym}^{(d)}$ can be written as an A-linear combination of x + y and xy.

Let's chose the *m*-basis. I hope to write some post about this basis. However I want to keep this one short, so here are the basics for future quick recalling. Let's say that a partition (French: partage) of some natural number $n \geq 0$ is some list $\lambda = (\lambda_1, \ldots, \lambda_k)$ of natural numbers with $\lambda_1 \geq \cdots \geq \lambda_k \geq 0$ and such that $\lambda_1 + \cdots + \lambda_k = n$. The integer k is the numbers of parts of λ , which we may write as $\ell(\lambda)$. To indicate that λ is a partition of n, we write $\lambda \vdash n$.

Fix some degree $d \geq 1$. To build a basis for $\operatorname{Sym}^{(d)}$, pick some $\lambda \vdash d$ with $\ell(\lambda) = 2$ (if needed, extend the partition with a second part of zero length). For instance, if d = 3, then possible choices of partition are (3,0) and (2,1). Now write

$$m_{\lambda} = x^{\lambda_1} y^{\lambda_2} + x^{\lambda_2} y^{\lambda_1}.$$

Collecting these polynomials for all possible partitions of d gives you a basis for $\operatorname{Sym}^{(d)}$. Note that what I've just written is a special case of the more general construction using the Reynolds symmetrization operator when there are more than two variables. Anyways, in the d=3 example, the basis is given as $\{x^3+y^3,x^2y+xy^2\}$.

Let's get back to our original problem. Recall: fixing a degree $d \geq 1$, we need to show that each m_{λ} can be written in the form p(x,y)(x+y)+r(x,y)xy for some polynomials p and q that obviously depend on m_{λ} . Here's the argument, which is quite simple after all this yapping. Suppose λ has two non-zero parts (eg. $\lambda = (2,1)$). Whatever m_{λ} is, it is garanteed by construction that each monomial in m_{λ} is divisible by both x and y; hence we can factor xy out of each monomial to obtain

$$m_{(\lambda_1,\lambda_2)} = xy \cdot m_{(\lambda_1-1,\lambda_2-1)}.$$

For instance,

$$m_{(2,1)} = x^2y + xy^2 = xy(x+y) = xy \cdot m_{(1,0)}.$$

What if λ has a single non-zero part? Then $m_{\lambda} = m_{(d)}$ looks like this:

$$m_{(d)} = x^d + y^d.$$

Newton to the rescue:

$$x^{d} + y^{d} = (x+y)^{d} - \sum_{i=1}^{d-1} \binom{d}{i} x^{d-i} y^{i}$$
$$= (x+y)^{d} - xy \sum_{i=1}^{d-1} \binom{d}{i} x^{d-i-1} y^{i-1}.$$

So we win. The only subtelty here is, what if d=1 so then inside of the sum we have a x^{-1} term? Well, if d=1 then the sum goes from i=1 to i=0, which means by convention that it's the empty sum, which is zero. Anyways, the case d=1 can be done separately (hint: it's trivial).