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Some theory

Let X and Y be two partially ordered sets (posets). Two functions f: X — Y
and g : Y — X are said to form a Galois connection when the following is true
foralla € X and all b € Y:

fla) <b <= a<g(b). (©)

We say that f is the lower (or left) adjoint, and g is the upper (or right) adjoint.
Oftentimes the lower adjoint is marked with a lower-star f, and the upper adjoint
with an upper-star f*. We will see for instance that the direct and inverse image
form such a connection, and this hopefully explains the usual notation for these
concepts. The shorthand I'm going to use for saying two functions are in Galois
connection is f, 4 f*.

In some sense, this says f(a) is the best approximation of a from above using
objects of Y with respect to g, and ¢(b) is the best approximation of b from
below using objects of X with respect to f. Don’t worry if this is unclear (it is
I'm sure).

Some examples

Three-way connection: direct image, inverse image, image in fibers
Let f : X — Y be any set function. The direct image is the function f, : 2% — 2V
defined as

[y ={yeY|TweA flx) =y}

The inverse image is the function f* :2Y — 2% defined as
f1(B) ={z e X| f(x) € B}.

These functions form a Galois connection f, 4 f*. The direct image is left adjoint
to the inverse image, and reciprocally the inverse image is the right adjoint to the
direct image. The use of “the” in the previous sentence will be explained below,
where I show that the left or right adjoint, if it exists, is uniquely determined.

Here’s a more interesting example! We now construct a right adjoint to the inverse
image. That’s not something you see often! Given a set function f: X — Y, we
define the image in fibers to be the function fi : 2% — 2¥ with the equation

A ={yeY|f 'y C A}

It’s the set of points such that their fiber is contained in A. It’s an interesting
construction. Notice for instance that any point that is not in the image of



f has an empty fiber, hence is an element of fi(A). Let’s prove that there
is a connection f* - fi. First, suppose f*(B) C A. In this context we want
to show that B C fi(A), so pick any element b € B. We just have to show
f~1(b) C A, which is the case because our hypothesis says every element of B
has its preimage contained in A, so we’re done. Second, suppose B C fi(A), and
let’s show that as a consequence f*(B) C A. Pick any element a € f*(B), so
f(a) € B. Hence f(a) € fi(A) by hypothesis. This means f~1(f(a)) C A, and
since a is an element of f~!(f(a)) we are done.

Linear algebra: span Let V be some vector space. Given a collection V of
vectors of V', their span is the smallest vector space which contains all vectors
in V. It is denoted by (V). That’s a well-defined operation that produces a
function (—) : 2V — Sub(V), where Sub(V) is the set of subspaces of V', partially
ordered by inclusion. There’s also a “forgetful” function U that goes the other
way and produces the set of vectors underlying a given subspace of V. These
two functions are in Galois connection, with the span being left adjoint to the
forgetful function.

Algebraic geometry: the vanishing set Here’s another example which is
close to my heart. Consider C[z,y] the ring of polynomials in the variables x
and y, with coefficients in C. Of course we could generalize the base field and
the number of variables, but let’s keep it simple and fun since the generalization
is obvious. For S C C[z,y] a set of polynomial, we define their vanishing set
V(S) to be the subset of points of C? where they all vanish:

V(S) = {(z,y) € C* | ¥p € S,p(z,y) = 0}.

Reciprocally, given a subset V' C C2?, we define the set I(V') consisting of the
polynomials that vanish at all points of V:

I(V) = {p € Clz,y] | V(z,y) € V,p(z,y) = 0}.

If we order the subsets of Clz, y] by “reverse containement”, we obtain a connec-
tion I 4V, which formally expresses the idea that being “algebraically small”
is the same as being “geometrically big”, and vice-versa. In other words, the
smaller a geometric place is, the more constraints (that’s the algebra part) are
needed to specify it.

Closure in topology Now for a purely topological example. Consider X a
topological space, and partially order its closed subsets by containement. Name
the set of closed subsets C. The closure is the function that sends any subset A
of X to A, the smallest closed subset that contains A. There’s also a “forgetful”
function U : C — 2% that sends a closed subset to itself. The claim here is that
the closure is left adjoint to the forgetful function.

Do you see the similarity between this example and the one about the span in
vector spaces? It’s this kind of abstract correspondence that a Galois connection
expresses.



More theory

The composite go f : X — X is called the closure operator, and composition the
other way around fog:Y — Y is called the kernel operator. A connection is
called a Galois insertion if the kernel operator is the identity map. Consider the
last example where we used the closure of a set in a topological space. Here the
closure operator is literally the closure, while the kernel operator is the identity,
so we have a Galois insertion. The span example is also a Galois insertion.

Because we always have g(b) < g(b), the condition (C) says we always have
f(g(b)) < b (just set a = g(b)). Similarily, we always have a < g(f(a)). Also
notice that if f and g are in connection, then f and g are necessarily monotone.
For instance, take a; and as two elements of X with aq < as. Then a1 < as <
g9(f(a2)), hence f(a1) < f(asz). For instance, this gives us for free that the direct
and inverse image constructions are monotone, and we always have:

o AC f*(f«(A)) for any A C X
o fu(f*(B)) CBforany BCY

But also:

e« BC fi(f*(B)) forany BCY

e« AC f*(fi(A)) for any A C X

e YV C (V) for any V C V (that’s actually part of the definition of the span)
e Y CV((Y)) for any Y C C?

o I(V(S)) C S for any S C C[z,y]

While we're at it, notice what happens if we replace a by f*(b) in the equation
a < f*(f«(a)). (Here f. and f* are two general functions in connection, not
necessarily the direct/inverse image pair). We get f*(b) < f*(f«(f*(b))), and
that’s true for every b € Y. On the other hand, it’s also true for every b that
f+(f*(d)) < b, by what we said above. Because f* is monotone, we obtain
FE(f«(f*(b))) < f*(b). From antisymmetry of our order relation, we conclude

fr®) = f(£(f7 (1)),

In other words, for every b € Y the element f*(b) € X is a fixed point for the
closure operator. Similarily, for every a € X the element f.(a) € Y is a fixed
point for the kernel operator.

Even more theory

If you stare long enough at condition (C) above, after a while you’ll understand
suddenly and all at once that it is precisely the data of two equations. First, it
gives a definition of the upper adjoint in terms of the lower adjoint:

g(b) =max{a € X | f(a) < b}.
Second, it gives a definition of the lower adjoint in terms of the upper adjoint:

f(a) =min{b €Y | a < g(b)}.



A striking consequence of the previous equations is that two functions in con-
nection mutually define each other. Hence an adjoint to some given function, if
it exists, is unique. Another sizeable consequence: if a function f: X — Y is
such that, for some b € Y, the set {a € X | f(a) < b} does not have a maximum
element, then f cannot have a right adjoint. A similar remark applies to a
function g : Y — X, which would then have no left adjoint if no minimum exists
for a given a € X.

When we considered the direct image f. of a set function f : X — Y, we
explicitely built a right adjoint for it: it was the inverse image f*. Now we can
give a new characterization of the inverse image in terms of the direct image,
using the previous formulas: for any B C Y,

J*(B) = max{A € X | f.(4) C B},

In other words, the inverse image of a set B is the biggest subset of X such that
its image is contained in B. That’s really nice. We can also play the same game
and characterize the direct image in terms of the inverse image: the direct image
of a set A is the smallest subset of Y such that its inverse image contains A.
Hence it seems lower adjoints can be thought of as supremums, approximating
from above, while upper adjoints behave as infimums, approximating from below.

Since we have a three-way connection f, - f* - fi, one could reasonably ask if
it’s possible to extend it further. Let’s ask the first obvious question: is there
a left adjoint to f.?7 It would necessarily be given, for each B C Y, by the
minimum of the set {4 C X | B C f.(A)}. Suppose f is not surjective. Then
there is some point yy € Y which is not contained in the image of f. For a
left adjoint to f, to be defined, it would have to spit out, when evaluated at
B = {yo}, the minimum of {A C X | yo € f+(A)}, but this set is empty since yg
is not in the image of f. Therefore the left adjoint cannot exist when f is not
surjective. Well, what if f is surjective? After thinking about this for a while, I
realized we need another disjunction here. Suppose f is not injective. Take two
distincts elements 7 and zo in X with y = f(x1) = f(x2). Set B = {y}. If a
left adjoint to f, were to exist, it would have to be defined at B as the minimum
of the set {A C X | y € f.(A)}. Clearly both {z1} and {z3} are elements of
this set; hence, if there was a minimum element, it would have to be contained
in both {z1} and {z2}, which would make it the empty set. However, the empty
set fails to verify B C f.(&). So the left adjoint cannot exist in this case either.
Since it trivially exists when f is bijective (it’s f*), we conclude: the direct
image f, admits a left adjoint if and only if f is bijective.

The next obvious question on this matter is: does the image in fibers f; admit a
right adjoint? From the previous paragraph our expectations are: if and only if f
is bijective. Let’s see if that’s really the case. In fact, when f is bijective we have
fi = f«, so by unicity of right adjoints we already know that the right adjoint of
fi, if it exists, has got to be f*, which it is. So imagine f is not bijective. First
case: suppose it is not surjective. Then fi(A) contains all y € Y which are not
contained in the image of f, since their fibers are all empty. Hence by taking B



to be any subset of Y completely contained in the image of f, we find that the
set {A C X | fi(A) C B} is empty; in particular it has no maximum element, so
the right adjoint does not exist. Second case: suppose f is not injective. Without
loss of generality we may suppose f is surjective, so that the fiber of any point
in Y is never empty. Pick some point y € Y with at least two distinct preimages
and partition f~!(y) into two disjoint non-empty subsets: f~!(y) = Ay U Ay. If
the right adjoint were to exist, its value at the empty set would have to be the
maximum element of the set {4 C X | fi(A) = @}. Quick scribling on napkin
paper is able to show that both A; and Ay are contained in this set, but their
union is not. Hence it is necessary that f be bijective for f to admit a right
adjoint.

We have seen that the inverse image is quite special because it is the only
one having both a left and a right adjoint in general. This is reflected in the
nice properties the inverse image admits, for instance it preserves unions and
intersections of subsets. We will see momentarily that this fact is an instance
of a general fact about Galois connections (and even more generally about
adjunctions).

When will this theory ever end?

I want to end on the general note that left adjoints preserve joins and right
adjoints preserve meets. This is a special case of a more general theorem that left
adjoints (in a more general sense) preserve colimits while right adjoints preserve
limits.

Suppose f, 14 f* are functions in Galois connection, with f, : X — Y. Suppose
also that X and Y are not only posets but also lattices (i.e. every pair of
elements has an infimum and a supremum). Fix a; and as two elements of X.
Because f, is necessarily monotone, we must have fi(a1) < fi(a; V az) and
fx(a2) < fi(a1 V a2). Hence fi(aj V az) is an upper bound for the pair f.(a1),
f«(a2). Now we show that this is not only an upper bound, it’s actually the least
upper bound. Let b be any other upper bound, that is, f.(a1) < band fi(ag) <.
By the Galois connection condition we must have a; < f*(b) and ay < f*(b).
Then f*(b) is an upper bound for the pair a1, as whence a; V as < f*(b). But
now by the connection condition again, we must have f,(a1 V a3) < b, which
is what we wanted. Therefore f.(a; V a2) = fi(a1) V fi(az). A dual argument
shows that f*(by Abs) = f*(b1) A f*(bs) for any pair of elements by, bs in Y.

Let’s return to our example of three-way connection between the direct image,
the inverse image and the image in fibers for any set function f: X — Y. What
we can conclude from the previous paragraph is: the inverse image is very special,
for it preserves both unions and intersections, being a right and left adjoint at
the same time. The direct image only preserves unions in general, while the
image in fibers only preserves intersections.
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