
Extended and contracted ideals
written by rapha on Functor Network
original link: https://functor.network/user/2593/entry/1102

Let ϕ : A → B be a ring homomorphism. For any ideal b of B, its preimage
ϕ−1(b) is an ideal of A, which we’ll call its contraction and denote by bc. On
the other hand, given an ideal a of A, its image by ϕ is not, in general, an ideal
of B (it’s only an ideal of the subring ϕ(A)). We’ll call the ideal of B generated
by ϕ(a) the extension of a, written ae.

An ideal a is said to be contracted if there exists some ideal b such that a = bc.
Similarily, an ideal b is said to be extended if there exists some ideal a such that
b = ae.

These constructions form a Galois connection, with extension being the lower
adjoint and contraction the upper adjoint. Recall that any Galois connection
enjoys some formal properties:

• Its kernel operator is “contraction followed by extension”, so we have
bce ≤ b and bcec = bc.

• Its closure operator is “extension followed by contraction”, therefore a ≤ aec

and ae = aece.

• As upper adjoints preserve meets, (b1 ∩ b2)c = bc
1 ∩ bc

2.

• Similarily, lower adjoints preserve joins: (a1 + a2)e = ae
1 + ae

2.

In addition to those formal properties, this connection enjoys further algebraic
relations. See Atiyah-Macdonald’s book Introduction to Commutative Algebra,
p.10, exercise 1.18, for many of them. For instance:

Supplementary relation 1: (a1a2)e = ae
1a

e
2.

First, let x1 ∈ a1 and x2 ∈ a2. Because products of the form x1x2 generate a1a2,
and because ϕ(x1)ϕ(x2) ∈ ae

1a
e
2, we find that ϕ(a1a2) ⊆ ae

1a
e
2, so we obtain the

first inclusion, (a1a2)e ≤ ae
1a

e
2.

Second, let y1 ∈ ae
1 and y2 ∈ ae

2. Then for k = 1, 2, there exists an integer n ≥ 0,
and for each 1 ≤ i ≤ n elements xk,i ∈ ak and elements bi

k ∈ B such that, using
Einstein’s summation convention, yk = bi

kϕ(xk,i). Hence the product y1y2 can
be expressed as bi

1bj
2ϕ(x1,ix2,j), which is clearly an element of (a1a2)e. Because

products of the form y1y2 generate ae
1a

e
2, we obtain the other inclusion and we

win.

Supplementary relation 2: (
√
b)c =

√
bc.

It’s really easy to prove this one by a simple chain of “if and only if”s, using the
fact an element y is in the radical of b if and only if there exists some integer
n > 0 such that yn ∈ b.
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Applications of extended and contracted ideals to localization

We can apply these notions to better understand the ideal structure of the
localization of a ring, in terms of the ideals in the original ring. From now on,
we take ϕ to be the canonical ring homomorphism from A to its localization
S−1A at some multiplicative submonoid S.

In this context, the contraction of an ideal is basically just singleling out all of
the numerators, while extension is putting back all of the possible denumerators.
Here’s a more precise statement about extension: recall that S−1 is a functor
that may also be applied to modules, not just rings. Any ideal a of A is an
A-module, so it makes sense to write S−1a, which is just the set of fractions
having as numerator an element of a and as denumerator an element of S. By
bringing terms to a common denumerator, we have:

ae = S−1a.

Proposition. For the ring homomorphism A → S−1A, the extension-contraction
connection is a Galois insertion, that is, for each ideal b in the localization, we
have bce = b.

Proof. We always have bce ≤ b. To prove the reverse inclusion, let a/s be an
element of b. Now a/1 is in b as well, and that element lies in the image of
ϕ; in fact, a/1 = ϕ(a). Therefore, a ∈ ϕ−1(b) = bc. This means that we have
a/1 ∈ ϕ(bc). By definition, bce is the ideal generated by ϕ(bc) hence a/1 ∈ bce.
Multiplying by 1/s yields a/s ∈ bce. ■

Thus we see that in the context of localization, contraction is an injective
operation, while extension is a surjective operation. In particular, every ideal in
S−1A is an extended ideal.

Proposition. If p is a prime ideal of A which doesn’t meet S, then we have
pec = p.

Proof. We always have p ≤ pec. To prove the reverse inclusion, let x be an
element of pec. Then ϕ(x) = x/1 is an element of pe. Since pe = S−1p, we can
write x/1 as a fraction y/s where y ∈ p and s ∈ S. Hence there exists s′ ∈ S
such that s′sx = s′y ∈ p, so x ∈ p by primality and the fact no element of S lies
in p. ■

Corollary. Extension-contraction gives a bijective, inclusion-preserving corre-
spondence between the set of prime ideals of A which don’t meet S, and the set
of prime ideals of S−1A.

Proof. In view of the previous two propositions, we only have to prove that:
(i) for any prime ideal q of S−1A, its contraction qc is also a prime ideal which
doesn’t meet S, and (ii) for any prime ideal p of A which doesn’t meet S, its
extension pe is also a prime ideal. Note also that the inclusion-preserving part
of the corollary is a formal consequence of Galois connections.
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For (i), it’s a general fact about ring homomorphism that the preimage qc is also
a prime ideal. Now, if qc contained some element of S, then qce would contain
an invertible element, so would be the whole ring; by the first proposition we
know that’s not the case, so qc doesn’t meet S.

For (ii), by primality of p the ring A/p is an integral domain. Let S denote the
image of S in A/p and consider the usual isomorphism of rings

S
−1(A/p) ∼= S−1A/S−1p.

Because p doesn’t meet S, the image S doesn’t contain zero. This is enough
to conclude the left hand ring is not the zero ring. Also, the left hand ring is
contained in a field (the field of fractions of A/p), so its only zero divisor is 0.
Therefore, the right hand side is a non-zero ring which is an integral domain, so
S−1p = pe is a prime ideal of S−1A. ■

Further applications

• For some prime ideal p of A, the prime ideals in the local ring Ap cor-
responds via extension-contraction to the prime ideals in A which are
contained in p.

• For any f ∈ A which is not nilpotent, there exists a prime ideal of A which
doesn’t contain f . To see it, notice that the localized ring Af is not the
zero ring, so admits a maximal ideal. By the corollary, the contraction of
this maximal ideal corresponds to a prime ideal in A which doesn’t contain
f .
In geometric terms, we proved that if f is a function on Spec A that is
not everywhere vanishing, then there exists a point at which f is not zero.
Pretty obvious when you put it that way!

• Building on the idea of the previous point, we can show that the set of all
nilpotents in a ring (its nilradical) is equal to the intersection of all prime
ideals of the ring. Any nilpotent is obviously contained in every prime
ideal since some power of it is zero. On the other hand, given an element
which is not nilpotent, there exists some prime ideal that doesn’t contain
it, hence in particular the element is not contained in the intersection of
all prime ideals.
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