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EDIT I don’t know why I thought computing a series expansion for e~! using
Euler’s identity was clever, while it’s just way simpler via the usual expansion of
e” in the real numbers... I'm a bit ashamed of this post.

The classic identity e’ = cosx + i sin x works for all complex values of z. Hence,
by setting x = ¢ we find
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Therefore, we have
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Distributing yields
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Notice that in the previous sum, each pair (k,¢) where k is odd and ¢ is even
cancels out the term corresponding to the pair (¢, k). Hence we may sum over k
and ¢ that have the same parity:
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