Computing the prime ideals in the ring of polynomials with integer coefficients

written by rapha on Functor Network original link: https://functor.network/user/2593/entry/1061

We'll use ideas from an older post to compute all of the prime ideals in the ring $\mathbb{Z}[x]$. This is done in order to better understand the "arithmetic surface" Spec $\mathbb{Z}[x]$.

Figure 1: A picture of Spec $\mathbb{Z}[x]$, from The Red Book of Varieties and Schemes (Mumford, 1999)

Let's get the easy stuff out of the way: since $\mathbb{Z}[x]$ is an integral domain, the zero ideal (0) is prime. Now suppose \mathfrak{p} is a prime ideal which isn't zero. Suppose \mathfrak{p} is a principal ideal, with $\mathfrak{p}=(f)$ for some polynomial $f\in\mathbb{Z}[x]$. Because $\mathbb{Z}[x]$ is a unique factorization domain, this is equivalent to f being \mathbb{Z} -irreducible. By Gauss' Lemma on polynomials, this is the same as f being \mathbb{Q} -irreducible and primitive in $\mathbb{Z}[x]$. Hence all principal prime ideals are exactly those that are principally generated by a \mathbb{Q} -irreducible polynomial with coefficients in \mathbb{Z} , written so that its coefficients are relatively prime.

Now suppose \mathfrak{p} is a prime ideal which is *not* principal. We know from an older post that in this case there exists two relatively prime polynomials f and g that

lie in \mathfrak{p} . We know that these polynomials stay relatively prime when considered in the larger ring $\mathbb{Q}[x]$. This larger ring being an Euclidean domain, Bézout's Identity is verified: there must exist a pair of polynomials $a, b \in \mathbb{Q}[x]$ such that

$$af + bq = 1.$$

We may put all coefficients that appear in a and b over the same denumerator $h \in \mathbb{Z}$, and write a = a'/h and b = b'/h for some $a', b' \in \mathbb{Z}[x]$. This gives the following equation in $\mathbb{Z}[x]$:

$$a'f + b'q = h.$$

Therefore h is contained in the ideal generated by f and g, hence is contained in \mathfrak{p} . Because h is neither zero nor a unit in \mathbb{Z} , it admits a decomposition into its prime factors, one of which must lie in \mathfrak{p} because \mathfrak{p} is a prime ideal. Thus \mathfrak{p} contains at least one prime number g.

Consider the map of rings $\mathbb{Z}[x] \to \mathbb{F}_q[x]$ which sends x to x. This is a surjective map, whose kernel is the prime ideal (q). Hence the map induces an isomorphism of rings

$$\mathbb{Z}[x]/(q) \cong \mathbb{F}_q[x].$$

Because (q) is contained in \mathfrak{p} , the prime ideal \mathfrak{p} corresponds to a prime ideal in $\mathbb{F}_q[x]$. Note that because $\mathbb{F}_q[x]$ is a principal ideal domain, we can write

$$\mathfrak{p} = (F) \mod (q),$$

where F is some polynomial in $\mathbb{F}_q[x]$. In fact, as we've mentioned, the image of \mathfrak{p} in the quotient is a prime ideal, so the element F is an irreducible polynomial; without loss of generality we may suppose further that F is monic, since the coefficient ring is a field. The polynomial F in $\mathbb{F}_q[x] \cong \mathbb{Z}[x]/(q)$ is its own representative when seen as an element of $\mathbb{Z}[x]$.

Let $\pi: \mathbb{Z}[x] \to \mathbb{F}_q[x]$ be the map used in the previous paragraphs. From the previous equation mod (q), we must have $\pi^{-1}((F)) = \mathfrak{p}$. In particular, this shows \mathfrak{p} is a maximal ideal, since (F) is a maximal ideal (every nonzero prime ideal in a PID is maximal). Also, it is not too hard to show by double inclusion that $\pi^{-1}((F)) = (q, F)$. Hence $\mathfrak{p} = (q, F)$. We could also simply show that $(q, F) \subseteq \mathfrak{p}$, and show that (q, F) is a maximal ideal because the quotient $\mathbb{Z}[x]/(q, F)$ is isomorphic to the field \mathbb{F}_q .

In conclusion, the prime ideals of $\mathbb{Z}[x]$ are precisely:

- 1. the zero ideal (0);
- 2. the ideals (p) where $p \in \mathbb{Z}$ is a prime number:
- 3. the ideals (f) where $f \in \mathbb{Z}[x]$ is a \mathbb{Q} -irreducible polynomial that is primitive, i.e. such that the greatest common divisor of its coefficients is 1; or
- 4. the ideals (p, f) where $p \in \mathbb{Z}$ is a prime number and $f \in \mathbb{Z}[x]$ is a monic polynomial which is irreducible modulo p.

As in the $\mathbb{C}[x,y]$ case, the zero ideal is the two-dimensional generic point of the surface, the principal ideals are the one-dimensional points corresponding to curves, and the maximal ideals (those with two generators) are the "usual" zero-dimensional closed points.