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Infinitude of Primes and Euclid’s Proof

Earlier, we acquired an age-old but reliable weapon: proof by contradiction.
However, this single weapon alone is not enough to prove the infinitude of prime
numbers. Proof by contradiction is like a final weapon, a bomb that demolishes
enemy strongholds. Relying solely on it and charging forward recklessly might
lead to unexpected pitfalls. When proving that natural numbers are infinite,
the simple principle that ”if x is a natural number, then x+1 is also a natural
number” sufficed. But to prove the infinitude of primes, we need a more refined
and sophisticated tool.

Let’s first establish a few mathematical terms. An integer is a number
that falls into the sequence ..., -3, -2, -1, 0, 1, 2, 3, ... without any decimal
points. Consider any two integers. For example, taking 5 and 7, their sum is
12, their difference is -2, and their product is 35, all of which remain integers.
This holds true for any pair of integers—their sum, difference, and product
are always integers. We express this property by saying that ”integers are
closed under addition, subtraction, and multiplication.” However, integers are
not closed under division; for instance, dividing 5 by 7 gives 5/7, which is not
an integer.!

When defining prime numbers, we often use the concept of ”divisibility.”
We naturally say things like ”4 is divisible by 2,” ”5 is not divisible by 2,” and
”since 5 is prime, it is only divisible by 1 and 5.” However, someone might ask,
"Why isn’t 5 divisible by 27 After all, 5/2 = 2.5.” Even such an obvious and
familiar concept as ”divisibility” requires a precise definition!

Definition. Let a be a non-zero itneger and b be an integer. We say "a divides
b” if there exists an integer x such that b = ax. (This is denoted as a | b.)

From this definition, we derive the following facts:

e 3 divides 6 because there exists an integer x such that 6 = 3z (in this
case, £ = 2).

e 3 does not divide 5 because there is no integer = such that 5 = 3z.

e 3 divides 0 because there exists an integer x such that 0 = 3z (in this case,
x =0).

IExercise: Under which operations (addition, subtraction, multiplication, division) are
natural numbers closed?



e 3 divides —3 because there exists an integer  such that —3 = 3z (in this
case, x = —1).

As a side note, any integer x that is divisible by 2 (i.e., 2 | x) is called an even
number. This definition includes —2 and 0 as even numbers.

In science, important verified facts are called laws. In mathematics, they are
called theorems. The difference lies in the methodology: science verifies laws
through experiments and observations, whereas mathematics proves theorems
using definitions and logic. Great theorems do not appear out of thin air. Just as
magnificent castles require solid foundations, proving elegant theorems requires
small yet essential preliminary facts. These facts are called lemmas. To prove
the infinitude of primes, we first need the following lemma.

Lemma. Let a be a non-zero integer a and b and c be integers. Suppose a
divides both b and c. Then a also divides b — c.

Let’s build intuition by looking at examples. For instance, 3 divides both
15 and 21, since there exist integers = and y such that 15 = 3x and 21 = 3y
(specifically, © = 5 and y = 7). The difference 15 — 21 is —6, and indeed,
there exists an integer z such that —6 = 3z (in this case, z = —2). Our
intuition suggests that this lemma should be true. However, in the rigorous
world of mathematics, examples merely illustrate special cases. To establish
this property for all integers, we must prove it.

Proof. Since a divides both b and ¢, by definition, there exist integers = and y
such that b = az and ¢ = ay. Thus, b — ¢ = ax — ay = a(z — y).

Since = and y are integers and integers are closed under subtraction, x — y
is also an integer. Hence, there exists an integer z such that b — ¢ = az, where
z = x — y. Therefore, a divides b — c. O

Thus, the proof is complete.?

Now, we are ready to prove that there are infinitely many prime numbers.
We will use proof by contradiction, so we begin by assuming the opposite of our
claim.

Proof. Suppose there are only finitely many primes. Then, there must be a
largest prime, denoted by P. Define M as the product of all prime numbers:
M =2x3x5x---x P. That is, M is divisible by all primes.

Consider the number M + 1. By the fundamental theorem of arithmetic,
M + 1 must be either prime or composite.

If M + 1 is prime, then it is greater than P, contradicting the assumption
that P is the largest prime.

If M + 1 is composite, then it has some prime divisor (). Since P is the
largest prime, Q must be one of 2,3,5,..., P.

2In mathematical etiquette, it is customary to signal the end of a proof. Historically, the
phrase Q.E.D. (Quod Erat Demonstrandum), meaning ”that which was to be demonstrated,”
was used. Nowadays, most proofs conclude with either a black square (W) or an empty square
(O) instead.



Since Q divides M (by definition of M), and @ also divides M 41, our lemma
implies that @ must divide (M +1)—M = 1. However, no prime number divides
1! This contradiction proves that our assumption was false. Therefore, there
must be infinitely many prime numbers. O

Let’s take a closer look at the core of this proof using a familiar example.

Suppose that the only prime numbers in the world are 2 and 3. Then, M +1
would be 7. Since 7 is a prime number greater than 3, our assumption leads to
a contradiction.

If we assume that the only prime numbers are 2, 3, and 5, then M + 1
would be 31. Since 31 is a prime number greater than 5, this also results in a
contradiction.

If we assume that the only prime numbers are 2, 3, 5, and 7, or even 2, 3,
5, 7, and 11, then M + 1 becomes 211 and 2311, respectively—both of which
are prime numbers. Since they are greater than 7 and 11, respectively, we again
reach a contradiction. A hasty reader might mistakenly conclude, ”Oh, M + 1
is always a prime number!”3

Now, suppose that the only prime numbers are 2, 3, 5, 7, 11, and 13. Then,
M + 1 would be 30,031, which is a composite number. However, none of 2, 3,
5, 7, 11, or 13 divides 30,031. The prime factorization of 30,031 is 59 x 509,
and both of these numbers are prime numbers greater than 13. Thus, we once
again arrive at a contradiction. This means that even if M + 1 is a composite
number, its prime factors must be greater than the ”largest prime” we initially
assumed.

This proof is an ancient one, appearing in Elements by Euclid around 300
BCE.* While mathematics has since provided various proofs of the infinitude
of prime numbers, none is as elegant and simple as this one. One might even
say that it is the most outstanding proof, and that there will never be a more
remarkable one.

By my standards, the next most beautiful proof is Euler’s. Euler showed
that the sum of the reciprocals of prime numbers diverges to infinity. In other
words, he demonstrated the following®:
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Each term in this sum—1/2,1/3,1/5 and so on—is less than 1. If there
were only a finite number of primes, then adding up finitely many values, each
less than 1, could never result in infinity. Therefore, there must be infinitely

many prime numbers. While this proof may appear more concise than Euclid’s,

3Some proofs commonly found on the internet conclude with ”Since M + 1 is always a
prime number, this leads to a contradiction,” but this is an incorrect argument.

4Elements of Euclid, Book 9, Proposition 20.

5Strictly speaking, Euler did not prove this. The concepts of convergence and divergence
were not formally established until about 100 years after Euler’s time. Euler provided reasons
why the sum of the reciprocals of prime numbers must be infinite, but a rigorous proof was
completed by Mertens in 1874.



it requires first proving that the sum of the reciprocals of primes diverges to
infinity.°

6To fully understand Euler’s explanation, one needs at least elementary number theory.
To comprehend Mertens’ proof, knowledge of analytic number theory is required. While the
proof itself is short, proving the necessary preliminary theorems requires a deep mathematical
understanding.



