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Section 1: Geometry of curves in R3

Consider α(t) : [a, b] → R3 to be a differentiable, time-parameterized curve
through R3. The length of such a curve is defined as

L(α) :=
∫ b

a

∥α′(t)∥2 dt. (1)

We say α is parameterized by arc-length (p.a.l.) if ∥α′(t)∥2 = 1 for all t ∈ [a, b].
Now we’ll introduce some definitions to build up to a notion of curvature.
Supposing α : [a, b] → R3 p.a.l., we define

T (t) := α′(t) (2)

and call it the unit tangent vector to α at time t. Intuitively, we define the
curvature of the curve α, denoted k(t) to be the magnitude of the time derivative
of T (t),

k(t) := ∥α′′(t)∥2 = ∥T ′(t)∥2. (3)

Put simply, the curvature tells us how quickly the unit tangent vector of our
curve changes! A little more digging will give allow us to draw a clear picture of
all of these quantities. Notice that, since ∥T (t)∥2 = 1, we have

d

dt
⟨T (t), T (t)⟩ = 0

⟨T ′(t), T (t)⟩ + ⟨T (t), T ′(t)⟩ = 0
⟨T ′(t), T (t)⟩ = 0.

This tells us that T ′(t) is necessarily orthogonal to the unit tangent, T (t). We
can use this insight to further define the unit normal vector,

n(t) := T ′(t)
∥T ′(t)∥2

= T ′(t)
k(t) . (4)

This gives us a solid basis of geometric descriptors of a given differentiable curve
α. A depiction of an example α(t), T (t) and n(t) is shown HERE!
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Section 2: Geometry of surfaces in R3

Now we can graduate to analyzing the geometry of surfaces in R3. Before we do
so, though, we will define the differential of a map X : R2 → R3. The differential
of X at p, denoted dXp : R2 → R3, is a linear map that takes tangent vectors to
curves passing through p to the associated tangent vector of the curve induced
by X, show in Figure HERE. Formally, let α : (−ϵ, ϵ) → R2 be a curve such that
α(0) = p and α′(0) = v. Then,

dXp(v) = d

dt
(X ◦ α)

∣∣∣
t=0

. (5)

While this definition may seem confusing, if we take a look at the matrix
representation of this linear map, we see that it simply boils down to the
jacobian of X applied to the vector v,

dXp(v) = JXv. (6)

Remark The function dXp(v) depends only on p and v, not the choice of
α(t) = (u(t), v(t)).

This becomes clear when we expand the definition of the differential using the
chain rule,

dXp(v) = d

dt
(X ◦ α)

∣∣∣
t=0

= Xuu′(t) + Xvv′(t)
∣∣∣
t=0

= Xuu′(0) + Xvv′(0)

where v = (u′(0), v′(0)) by definition and Xu = ∂X
∂u , Xv = ∂X

∂v .

Now we can finally discuss surfaces in R3, specifically regular surfaces.

Definition

S ⊂ R3 is called a regular surface if ∀p ∈ S, ∃ an open subset V of R3 such that
p ∈ V and there exists a surjective, C∞ map X : U ⊂ R2 → V ∩ S such that

1. X is a homeomorphism

2. dXp is injective ∀p ∈ U .

X is often called a local parameterization or a local chart of S. This definition
establishes the notion that a regular surface S ⊂ R3 can be constructed by
stitching together deformations of patches of R2. Then, by analyzing these
deformations we’ll be able to quantify and characterize the geometry of S!
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Tangent curves and spaces
We’ll now define the notion of a tangent space to a point, a critical geometric
object in Differential Geometry. Given a regular surface S ⊂ R3, we we say
v ∈ R3 is a tangent vector if there exists a curve α : (−ϵ, ϵ) → S such that
α(0) = p and α′(0) = v. A visualization is provided HERE!

Definition The tangent space to S at p is defined as

TpS = {v ∈ R3 | v tangential to S at p}.

Figure HERE! shows an example of the tangent space to a surface. This vector
space TpS actually arises directly from the charts used to construct S. This is
illustrated in the following lemma:

Lemma Let X : U → S be a local chart around p. Then TpS = dXX−1(p)(R2).

I’ve omitted the proof, but it arises quite simply from the definitions of the
differential and the tangent space. A simple corollary of this result follows too,

Corollary Let X : U → S be a local chart around p. Then TpS = span{Xu, Xv}.

Critically, this means we have access to a basis of our tangent space about each
p ∈ S arising only from the chart X. Now that we’ve established a notion of
tangency, we’ll do the same for normalcy.

Normal vector fields and the Gauss map
A vector field on S (i.e. a differentiable map V : S → R3) is called normal if
∀p ∈ S we have ⟨V (p), w⟩ = 0 ∀w ∈ TpS. Furthermore, V is called unitary if
∥V (p)∥2 = 1 ∀p.

Unitary normal vector fields give rise to the notion of orientability. For example,
non-orientable surfaces like the Möbius strip do not admit a global unitary
normal vector field. This idea is beatifully illustrated by a painting by M.C.
Escher, shown HERE!

If it exists, the unitary normal vector field N : S → R3 for a surface S is
called the Gauss map. Studying the behavior of the Gauss map will lead to a
generalization of the notion of curvature for surfaces.

The First and Second Fundamental Forms
The first fundamental form (denoted Ip) and second fundamental form (denoted
IIp) are quadratic forms on the tangent space of surfaces - namely, they take
a vector pair (v, w) ∈ TpS × TpS to a number in R. These two maps describe
describe respectively the intrinsic and extrinsic geometry of a surface S, and
will be the subject of our study for the rest of the blog post.
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Definition Suppose we have a surface S with a local chart X : U ⊂ R2 → S,
and a point p ∈ X(U). The first fundamental form of S at p, denoted Ip :
TpS × TpS → R, is the map

Ip(v, w) = ⟨dXp(v), dXp(w)⟩ (7)

for (v, w) ∈ U × U . It is often interpreted as the restriction of the Euclidean
inner product to TpS.

A visualization of the quantities used in the definition can be seen in HERE!
For me, it is intuitive to think about the matrix representation of Ip. Expanding
the definition we see,

Ip(v, w) = ⟨dXp(v), dXp(w)⟩
= vT JT

XJXw

= vT

[
E F

F G

]
w

where

[
E F

F G

]
=

[
⟨Xu, Xu⟩ ⟨Xu, Xv⟩

⟨Xu, Xv⟩ ⟨Xv, Xv⟩

]
.

By looking at the first fundamental form this way, we see that it tells us how
much the local chart X deforms the patch U ⊂ R2 along the coordinate axes u
and v to get the patch X(U) ⊂ S! We can make this idea concrete by computing
path lengths on S, where we will see a clear dependence on the first fundamental
form.

Let β : [a, b] → U ⊂ R2 and let α = X ◦ β, where X is a local chart for S. Lets
compute the length of the path of β and α:

L(β) =
∫ b

a

∥β′(t)∥2 dt

L(α) =
∫ b

a

∥α′(t)∥2 dt.

We can apply the chain rule to get α′(t) in terms of β,

α′(t) = d

dt
(X ◦ β)(t)

= Xuu′(t) + Xvv′(t).
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Plugging back into the path length equation, we get

L(α) =
∫ b

a

〈
Xuu′(t) + Xvv′(t), Xuu′(t) + Xvv′(t)

〉1/2
dt

L(α) =
∫ b

a

(
Eu′(t)2 + 2Fu′(t)v′(t) + Gv′(t)2

)1/2
dt.

Rewriting L(β) as follows,

L(β) =
∫ b

a

(
u′(t)2 + v′(t)2

)1/2
dt

clearly illustrates the fact that Ip determines the distortion of path lengths
induced by the chart X. Now, we will move on to define and analyze the second
fundamental form.

Definition Suppose we have a surface S with a local chart X : U ⊂ R2 → S,
and a point p ∈ X(U). The second fundamental form of S at p, denoted
IIp : TpS × TpS → R, is the map

IIp(v, w) = ⟨−dNp(v), w⟩ (8)

for (v, w) ∈ U × U .

Again, we can look at the matrix representation of IIp to get a better idea of
what is going on,

IIp(v, w) = ⟨−dNp(v), w⟩
= vT (−JN )w

where JN is the jacobian of the Gauss map. Some calculation reveals that

JN =
[

E F

F G

]−1 [
e f

f g

]
where, [

e f

f g

]
=

[
−⟨Nu, Xu⟩ −⟨Nv, Xu⟩

−⟨Nu, Xv⟩ −⟨Nv, Xv⟩

]
.

Again, this sheds some light on what IIp represents: it tells us how the normal
vector changes as we move along the surface (specifically with respect to changes
in the parameters u and v in the domain of the local chart X).

Theorem (Euler) For a surface S suppose we have a unitary normal vector
field N : S → R3. Also suppose that we have α : (−ϵ, ϵ) → S p.a.l., such that
α(0) = p, α′(0) = v. Then

IIp(v, v) = ⟨α′′(0), N(p)⟩. (9)
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The term on the right, ⟨α′′(0), N(p)⟩, represents the projection of the acceleration
of α onto the surface normal. This quantity is often referred to as the normal
curvature, as it represents the amount of curvature of α that is normal to the
surface S at p.

Proof of Euler’s Theorem:

IIp(v, v) = IIp(α′(0), α′(0))
= ⟨dNp(α′(0)), α′(0)⟩

=
〈 d

dt
N(α(t))

∣∣∣
t=0︸ ︷︷ ︸

N ′(p)

, α′(0)
〉

=
〈

N(p), α′′(0)
〉

where the last step follows from the fact that N(α(t)) ⊥ α′(t).

Definition The principal curvatures of a surface S at p are defined to be the
maximum and minimum normal curvatures that an arc-length parameterized
curve α can have, where α(0) = p. Formally,

k1(p) = min
α(0)=p

kn(0)

k2(p) = max
α(0)=p

kn(0).

From the principal curvatures, the definitions of Gaussian and mean curvature
arise:

Definition The Gaussian curvature of a surface S at p is the product of the
principal curvatures,

K(p) = k1(p)k2(p) (10)

while the mean curvature is the mean of the principal curvatures,

H(p) = k1(p) + k2(p)
2 . (11)

For the rest of the blog we’ll focus on Gaussian curvature. While mean curvature
offers a tool for the study of the extrinsic geometry of a surface, it is out of the
scope of this blog post.

To give some grounding for Gaussian curvature: the plane has K ≡ 0, the
standard 2-sphere has K ≡ +1, while the standard pseudosphere has K ≡ −1.
But a key question arises: how were those quantities computed? It’s not clear how
to solve the minimization problem required to compute the principal curvatures.
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But if we study IIp a little more, we’ll find that it has the ingredients to allow us
to compute k1 and k2 directly from a local chart X! Recall

k1(p) = min
α(0)=p

kn(0)

= min
α(0)=p

〈
N(p), α′′(0)

〉
.

We can directly apply Euler’s Theorem to replace the right hand side with the
second fundamental form applied to the initial velocity of α,

k1(p) = min
α(0)=p

〈
N(p), α′′(0)

〉
= min

α(0)=p
IIp(α′(0), α′(0)).

Because this last line only depends on the zero and first-order behavior of α, we
can replace it with the following,

k1(p) = min
∥v∥2=1

IIp(v, v)

= min
∥v∥2=1

vT (−JN )v.

The interpretations of the eigenvalues of a quadratic form as the minimal and
maximal values of the quadratic form restricted to the unit sphere tells us that
the eigenvalues λ1, λ2 of −JN are the principal curvatures:

k1(p) = λ1

k2(p) = λ2.

This gives rise to new equations for the Gaussian and mean curvatures:

K(p) = det(−JN ) = eg − f2

EG − F 2

H(p) = 1
2Tr(−JN ) = 1

2
eG + gE − 2fF

EG − F 2 .

Section 3: Gauss’ Theorema Egregium
In this section we’ll walk through Gauss’ Theorema Egregium, one of the major
results of differential geometry. To do so, we first need to establish the definition
of isometric maps and some properties of them.

Definition Surfaces S, S̃ ⊂ R3 are called isometric if there exists a diffeomor-
phism (a C1 map with a C1 inverse) f : S → S̃ that takes each curve on S to a
curve of the same length on S̃.

An example of an isometric surface pair, the plane and the S-surface, is shown
in HERE! These surfaces are isometric because we can bend, but not stretch,
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the plane so that it coincides with the S-surface. Such a transformation does
not distort the length of paths!

Theorem Patches of surfaces S, S̃ ⊂ R3 are isometric if there exist charts
X : U ⊂ R2 → S and X̃ : U ⊂ R2 → S̃ such that the first fundamental form Ip

coincides.

Proof sketch: An isometric map between patches of S and S̃ preserves path
lengths. We also have shown that the distortion of such path lengths incurred by
the charts X and X̃ is determined completely by their respective first fundamental
forms. From here, it’s not hard to show that since an isometry exists (and path
lengths are therefore preserved under this map) the first fundamental forms of
the two surfaces must coincide. ADD FIGURE HERE!

Now we are in a position where we can state Gauss’ Theorema Egregium.

Theorem (Gauss) The Gaussian curvature of a surface S is invariant under
isometries. That is, if f : S → S′ is an isometry, then K(p) = K(f(p)) ∀p ∈ S.

Proof sketch. One can show that the Gaussian curvature K depends only on the
zero and first order behavior of the first fundamental form E, F and G. Thus,
K can be written as

K = eg − f2

EG − F 2

= ϕ(E, G, F, Eu, Ev, Gu, Gv, Fu, Fv)
EG − F 2

where ϕ is some messy function of the first fundamental form and its partial
derivatives w.r.t. u and v. Since K can be written as a function of only the
first fundamental form, and by the previous theorem isometries preserve the
first fundamental form, we can conclude that the Gaussian curvature K must be
preserved under isometries!

Implications
Gauss’ Theorema Egregium is a major result of differential geometry, as it sheds
light on the distinction between intrinsic and extrinsic curvature. Take, for
example, an open subset of the plane and roll it into a cylinder. Intuitively (and
one can check this by computing E, F, G) the lengths of paths are completely
unchanged. Since K ≡ 0 for the plane, Gauss’ Theorema Egregium tells us that
this must mean K ≡ 0 for the cylinder!

This arises from the fact that Gaussian curvature measures the intrinsic distortion
of a surface from a Euclidean space. Rolling the plane up into a cylinder
introduces extrinsic curvature, but does not stretch or warp the surface in any
way. One can see this by playing around with a piece of printer paper. Anything
you do to bend or fold the surface that does not introduce any tears or pleats is
introducing extrinsic curvature (and assuming no hard creases are made, such a
transformation is an isometry)!

8



Another huge implication of the Theorema Egregium is in the field of Cartography.
Since K ≡ 0 for the plane and K ≡ +1 for the sphere, the surfaces must not be
isometric. Therefore, one cannot create a distance-preserving projection of the
sphere onto the plane.
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