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Whenever we get a break from working with clients, we like to help peo-
ple with their matthematics and statistics problem on Reddit. The following
problem was one that was posed this past weekend on Reddit.

Define f (k) |[0, 1] → [0, 1] , k = 0, 1, . . . iteratively as follows ,

f (0)(x) := 2x(1− x)

and for k ≥ 1
f (k)(x) := f ◦ f (k−1)(x).

The problem is to evaluate

Ik :=

∫ 1

0

f (k)(x) dx,

k = 0, 1 . . .
To evaluate the integral, the substitution η := x− 1
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one has
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g(k)(η) dη

k = 0, 1, . . . The advantage conferred by this substitution is that the functions
g(k) take on much simplier form that the functions f (k).

Note that
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and for k ≥ 1
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It follows that
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and
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At this point the pattern is clear, and induction can be used to prove that for
k ≥ 0

g(k)(η) =
1

2
− 22

k+1−1η2
k+1

.

A straightforward integration yields

Ik =
1
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.
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