The Summer 2025 Featured Problem Series Week 7: Sophomore-Level Discrete Math

iMathTutor® • 13 Oct 2025

The Archive

To see problems and solutions in the fall series, which runs from October 13 through December 15 visit The Fall 2025 Featured Problem Series

Problem

This week's problem comes from Penn State Math 311W, a sophomore-level discrete math course known for its concrete yet challenging problems that do not depend on knowledge of calculus.

The Fibonacci sequence $\{F_n\}_{n=0}^{\infty}$ is defined recursively as follows: $F_0=0, F_1=1$, and for n>1

$$F_n = F_{n-1} + F_{n-2}. (1)$$

Show that every two successive terms of the Fibonacci sequence are relatively prime, that is $gcd(F_n, F_{n+1}) = 1$ for $n \ge 0$.

Solution

The proof uses induction.

The base case is n=0. In this case, the definition of the Fibonacci sequence yields

$$\gcd(F_0, F_1) = \gcd(0, 1). \tag{2}$$

Let d be a common divisor of 0 and 1. Although d|0 for all d, d|1 implies that d=1. Hence d=1 is the only common divisor of F_0 and F_1 . In particular, there is no common divisor greater than 1, consequently $\gcd(F_0,F_1)=1$. Thus the base case holds.

The induction hypothesis is that $\gcd(F_n, F_{n+1}) = 1$ for some $n \ge 0$. It must be shown that the induction hypothesis implies that $\gcd(F_{n+1}, F_{n+2}) = 1$. The definition of the Fibonacci sequence is used to write

$$\gcd(F_{n+1}, F_{n+2}) = \gcd(F_{n+1}, F_{n+1} + F_n)$$
(3)

Two properties of the greatest common divisor, $\gcd(a,b) = \gcd(a,b-a)$ and $\gcd(a,b) = \gcd(b,a)$, are used on the right hands side of (3) to obtain

$$\gcd(F_{n+1}, F_{n+1} + F_n) = \gcd(F_{n+1}, [F_{n+1} + F_n] - F_{n+1})$$

$$= \gcd(F_{n+1}, F_n) = \gcd(F_n, F_{n+1}) = 1,$$
(4)

where the last equality follows from the induction hypothesis. Equations (3) and (4) together give

$$\gcd(F_{n+1}, F_{n+2}) = 1.$$
 \blacksquare (5)