Every open cover has a countable subcover => a countable dense set

written by User 2237 on Functor Network original link: https://functor.network/user/2237/entry/830

Let X be a metric space.

Every open cover in X has a countable subcover => a countable dense set $\{B(1/n,\,x)\mid \text{all }x\text{ in }X\}$ is clearly an open cover, whatever n>0 one picks. for a fixed n, say n=2, there is a subcover $\{B(1/n,x_{mn})|x_{mn},m=1,2,3,...\}$ by the assumption. To get a dense set, we just include xmn for all m and n.

The converse also holds.