Birational invariance of plurigenera

written by akrishna168 on Functor Network original link: https://functor.network/user/1778/entry/788

In this post, we introduce quantities called *plurigenera* that are associated to smooth, complete varieties, and show that they are birational invariants. We offer two sources of motivation:

- 1. Surfaces. The classification of curves essentially amounts to stating that there exists one invariant (the genus), and for curves of fixed genus g, there is a (3g-3)-dimensional family. Surfaces, however, are more complicated, and we anticipate their moduli to have more intricate data than in the case of curves; they cannot be classified by a single invariant. Without getting too far afield into a "complete" taxonomy (due to Enriques-Kodaira), we wish to find invariants of surfaces, of which the plurigenera will serve as a family of examples that straightforwardly generalize the genus of a curve. Moreover, they generalize to higher-dimensional n-folds.
- 2. Rationality. A question that remained open for some time was whether unirational varieties were rational that is, if varieties admitting a dominant rational map from projective space were actually birationally equivalent to projective space. For curves, this was answered in the affirmative by a classical theorem of Luroth, and for surfaces, a result of Castelnuovo also indicated its verity. However, numerous counterexamples emerged for threefolds in the 70s. A general program, then, was to find birational invariants that took on different values for a given example when compared to \mathbb{P}^n .

Definition. Let X be a smooth, complete variety over a field k. The *plurigenera* of X are

$$p_m(X) := \dim_k H^0(X, \omega_X^{\otimes m}).$$

Recalling that one definition for the genus of a curve C was the dimension of the space of 1-forms on it, we recover $g_C = p_1(C)$.

Theorem. For all $m \geq 1$, the plurigenera $p_m(X)$ are birational invariants for smooth complete varieties.

Hartshorne proves that the genus of a curve is a birational invariant, a proof which we shall adapt below.

Proof. Let $f: X \dashrightarrow Y$ be a birational map of smooth complete varieties. Since X is normal and Y is complete, f extends to a morphism $f: U \to Y$, where $U \subseteq X$ is open and such that $\operatorname{codim}_X(X \setminus U) \ge 2$. To compare forms on X to those on U, we have a pullback morphism

$$f^*\Omega^1_Y \to \Omega^1_U$$

which is an isomorphism on the open subset of U over which f is an isomorphism. Then, taking top exterior powers and mth tensor powers induces a morphism

$$f^*(\Omega_Y^n)^{\otimes m} \to (\Omega_U^n)^{\otimes m}$$
,

which is still generically an isomorphism. This is an injection of sheaves since both are locally free, hence torsion-free. All of this gives rise to the following commutative diagram:

$$H^{0}(U, f^{*}(\Omega_{Y}^{n})^{\otimes m}) \longleftrightarrow H^{0}(U, (\Omega_{U}^{n})^{\otimes m})$$

$$\uparrow \qquad \qquad \text{res} \uparrow$$

$$H^{0}(Y, (\Omega_{Y}^{n})^{\otimes m}) \longleftrightarrow H^{0}(X, (\Omega_{X}^{n})^{\otimes m})$$

where the left-hand is injective since f is dominant, and the right-hand is an isomorphism since $\operatorname{codim}_X(X\setminus U)\geq 2$, $(\Omega_X^n)^{\otimes m}$ is locally free, and since X is normal (and so S_2 , i.e. functions extend over codimension two or greater). Taking dimensions, it follows that $p_m(Y)\leq p_m(X)$ for all $m\geq 1$; replacing f with the inverse of the birational map, we get that $p_m(X)\leq p_m(Y)$, which proves that $p_m(X)=p_m(Y)$ for all m>0, as desired. \square