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In this post, we will discuss (without any proofs) Tate’s parameterization of
elliptic curves over p-adic fields. Aside from intrinsic importance, his work
marked the beginning of rigid analytic geometry, which I’ll likely discuss in
future posts.

Recall that an elliptic curve E over a field K is a smooth, irreducible projective
curve of genus 1 with a choice of distinguished point O. An elliptic curve has
a group law (in fact, E ∼= Pic0(E)), for which the point O is the identity; over
C, this is the same as a Riemann surface of topological genus 1 equipped with
a choice of point. Weierstrass was able to uniformize elliptic curves over C:
by starting with their description as a complex torus C/Λ, where Λ ⊆ C is a
lattice of rank two, he used the ℘-function (which expresses a complex torus
as a branched, two-sheeted cover of the Riemann sphere Ĉ at the group of four
2-torsion points E[2]) to realize C/Λ as a cubic in P2 via the map [℘ : ℘′ : 1].
This renders more explicit the shape of the n-torsion subgroups, the group law,
and the possible endomorphism rings.

Tate wanted to mimic this construction for elliptic curves over Qp, but imme-
diately ran into a problem: the p-adic numbers have no nontrivial lattices! To
see this, let Λ ⊆ Qp be a nonzero subgroup. Take t ∈ Λ, not zero, and note
that pnt ∈ Λ for all n ≥ 0. Moreover, limn→∞ pnt = 0, so Λ accumulates at 0,
contradicting discreteness.

To mitigate this, we can apply the exponential in the complex setting to obtain
an alternative description of elliptic curves as those of the form C∗/qZ. This
topologically checks out, although it is slightly harder to see – the space C∗ is
biholomorphic to the cylinder C/Z, and then modding out by powers of q under
the homomorphism exp effects quotienting by another rank-one lattice. Thus,
these successive quotients recover the description of elliptic curves as C modulo
a rank-two lattice. Formally mimicking this construction bodes much better for
Qp, since the group Q∗

p has plenty of discrete subgroups; for example, any q ∈ Q∗
p

with |q| < 1 defines the discrete subgroup qZ. We will use this description to
furnish a p-adic analytic isomorphism between Q∗

p with a p-adic elliptic curve
Eq, and subsequently obtain a similar parameterization to that in the complex
case.

All of this is summarized in the following theorem: Theorem. (Tate) Let K be
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a finite extension of Qp. Let q ∈ K∗ satisfy |q| < 1, and define

sk(q) =
∑
n≥1

nkqn

1 − qn
, a4(q) = −5s3(q), a6(q) = −5s3(q) + 7s5(q)

12 .

(a) The series a4(q), a6(q) converge in K, enabling us to define the Tate curve
by the equation

Eq : y2 + xy = x3 + a4(q)x + a6(q).

(b) The Tate curve is an elliptic curve over K with discriminant and j-invariant
given by

∆(Eq) = q
∏
n≥1

(1 − qn)24, j(Eq) = 1
q

+ 744 + 196884q + · · ·

(c) The series

X(u, q) =
∑
n∈Z

qnu

(1 − qnu)2 − 2s1(q), Y (u, q) =
∑
n∈Z

(qnu)2

(1 − qnu)3 + s1(q)

converge for all u ∈ K̄ \ qZ. They define a surjective morphism

ϕ : K̄∗ → Eq(K̄)

sending u 7→ (X(u, q), Y (u, q)) for u /∈ qZ, and u → O if u ∈ qZ.

(d) The morphism ϕ is compatible with the action of the absolute Galois group
GK := Gal(K̄/K), namely,

ϕ(uσ) = ϕ(u)σ

for all u ∈ K̄∗, σ ∈ GK .

The arithmetic contribution from the last part of the theorem, absent in the
theory of elliptic curves over C, tells us that for any algebraic extension L/K,
we have an isomorphism

ϕ : L∗/qZ → Eq(L).

Our programme is as follows: we will flesh out the story of elliptic curves over C
to indicate where the formulas in Tate’s result come from, and then prove each
part of the p-adic version. After that, we will indicate some interpretations, as
well as an application to the theory of complex multiplication.
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