
Simple linear regression model
written by The Coué method on Functor Network
original link: https://functor.network/user/1751/entry/653

Goal
Write a mathematical model y = α + βx that describes the relationship between
two variables x and y.

Setup
Given observations (xi, yi), i = 1, . . . , n, consider a model of the form

yi = α + βxi + ei

where ei is the random part of the model. The only assumption is that the mean
of ei’s is 0. The aim is to find estimates for α and β.

Comments

• The model assumes that the xi’s are known exactly and that the error
terms appear only in the yi’s.

• Note that yi is the actual value and that α + βxi is the predicted value, so
ei = yi − (α + βxi) is the ith residual.

The function to minimize

The residual sum of squares function RSSx1,x2,...,xn,y1,y2,...,yn(α, β) denoted RSS
is

RSS =
n∑

i=1
e2

i

or equivalently

RSS =
n∑

i=1
(yi − α − βxi)2
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Solving for α

Differentiating RSS with respect to α gives

∂RSS
∂α

= ∂

∂α

n∑
i=1

(yi − α − βxi)2 = −2
n∑

i=1
(yi − α − βxi) (1)

and setting ∂RSS
∂α to zero yields

∂RSS
∂α

= 0 =⇒ α = 1
n

n∑
i=1

(yi − βxi) = ȳ − βx̄

where (x̄, ȳ) = ( 1
n

∑n
i=1 xi,

1
n

∑n
i=1 yi) is the centroid of the n observations.

Hence the estimate for α is

α̂ = ȳ − β̂x̄ (2)

Comments

• Note that the right hand side of equation (1) is equivalent to −2
∑n

i=1 ei,
so setting ∂RSS

∂α to 0 implies that

n∑
i=1

ei = 0 (3)

• Note that this is the assumption that the mean of ei’s is 0. So, in some
sense, this assumption follows from the given model.

• When you plot the n observations (xi, yi), i = 1, . . . , n in the xy-plane, the
line y = α̂ + β̂x passes through the centroid (x̄, ȳ) of the n observations.

• It can be useful to think of the centroid (x̄, ȳ) as a fixed fulcrum and
to think of the line y = α̂ + β̂x as a lever moving on this fulcrum. To
completely determine the line, you’d need to find an estimate for β, which
is the slope of the line.

Solving for β

Differentiating RSS with respect to β gives

∂RSS
∂β

= ∂

∂β

n∑
i=1

(yi − α − βxi)2 =
n∑

i=1
2(yi − α − βxi)(−xi) (4)
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and setting ∂RSS
∂β to zero yields

∂RSS
∂β

= 0 =⇒
n∑

i=1
xiyi = α

n∑
i=1

xi + β

n∑
i=1

x2
i

=⇒
n∑

i=1
xiyi = αnx̄ + β

n∑
i=1

x2
i

Using (2) yields

n∑
i=1

xiyi = (ȳ − βx̄)nx̄ + β

n∑
i=1

x2
i

or

(
n∑

i=1
xiyi) − nx̄ȳ = β((

n∑
i=1

x2
i ) − nx̄2)

or

β =
(

n∑
i=1

xiyi) − nx̄ȳ

(
n∑

i=1
x2

i ) − nx̄2

or, after dividing both numerator and denominator by n,

β =

1
n (

n∑
i=1

xiyi) − x̄ȳ

1
n (

n∑
i=1

x2
i ) − x̄2

Note that the numerator of the fraction in the previous expression is Cov(x, y)
and the denominator is Cov(x, x), as shown by the following computations.
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Cov(x, y) = 1
n

n∑
i=1

(xi − x̄)(yi − ȳ)

= 1
n

(
n∑

i=1
xiyi −

n∑
i=1

xi · ȳ − x̄ ·
n∑

i=1
yi + nx̄ȳ)

= 1
n

(
n∑

i=1
xiyi − nx̄ · ȳ − x̄ · nȳ + nx̄ȳ)

= 1
n

(
n∑

i=1
xiyi − nx̄ȳ)

= 1
n

(
n∑

i=1
xiyi) − x̄ȳ

Cov(x, x) = 1
n

n∑
i=1

(xi − x̄)2

= 1
n

(
n∑

i=1
x2

i − 2x̄ ·
n∑

i=1
xi + nx̄2)

= 1
n

(
n∑

i=1
x2

i − 2x̄ · nx̄ + nx̄2)

= 1
n

((
n∑

i=1
x2

i ) − nx̄2)

= 1
n

(
n∑

i=1
x2

i ) − x̄2

Therefore

β = Cov(x, y)
Cov(x, x)

Using Cov(x, x) = σ2
x and Cov(x, y) = σxσyrxy, where σx is the standard

deviation of the xi’s, σy is the standard deviation of the yi’s, and rxy is the
correlation between the xi’s and the yi’s, we get

β = σxσyrxy

σ2
x

= rxy
σy

σx

Hence the estimate for β is
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β̂ = rxy
σy

σx
(5)

Comments

• Note that the right hand side of equation (4) is equivalent to −2
∑n

i=1 eixi,
so setting ∂RSS

∂β to 0 implies that

n∑
i=1

eixi = 0 (6)

• Note that the population factor 1
n has been used in all formulas (for

example, for covariance, standard deviation, etc.).

• Note that β̂ is proportional to the correlation rxy.

The critical point is a local minimum

In order to conclude that the critical point (α̂, β̂) is a local minimum for RSS,
it is sufficient to show that the Jacobian of RSS at (α̂, β̂) is a positive definite
2 × 2 matrix.

From (1) it follows that ∂RSS
∂α = 2nα + 2nβx̄ − 2nȳ and from (4), it follows that

∂RSS
∂β = 2nαx̄+2β

∑n
i=1 x2

i −
∑n

i=1 xiyi. Therefore the Jacobian of RSS at (α̂, β̂)
is the matrix

(
2n 2nx̄

2nx̄ 2
∑n

i=1 x2
i

)
The matrix is positive definite if and only if two conditions are satisfied: (i) the
(1,1) entry of the matrix is positive; and (ii) the determinant of the Jacobian
is positive. Condition (i) is satisfied because the (1,1) entry of the Jacobian is
2n, which is positive. Condition (ii) is also satisfied because the determinant is
4(n

∑n
i=1 x2

i −(
∑n

i=1 xi)2), which is equivalent to 4
∑n

i=1
∑n

j=1 (xi − xj)2, which
is positive.

The model

Using (2) and (5), the model ŷ = α̂ + β̂x can be written as

ŷ = ȳ + rxy
σy

σx
(x − x̄) (7)

or
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ŷ − ȳ

σy
= rxy

x − x̄

σx
(8)

Regression to the mean

From either (7) or (8), it follows that

σŷ = |rxy|σy ≤ σy (9)

Inequality (9) is the essence of the phenomenon that is commonly known as
‘regression to the mean’.

Summing up

α̂ = ȳ − β̂x̄

β̂ = rxy
σy

σx

ŷ = ȳ + rxy
σy

σx
(x − x̄)

Mean squared error (MSE)

MSE = 1
n

n∑
i=1

(yi − ŷi)2

= 1
n

n∑
i=1

(yi − ȳ − rxy
σy

σx
(xi − x̄))

2

= 1
n

n∑
i=1

((yi − ȳ) − rxy
σy

σx
(xi − x̄))

2

= 1
n

n∑
i=1

(yi − ȳ)2 + 1
n

n∑
i=1

(rxy
σy

σx
(xi − x̄))

2
− 1

n
· 2rxy

σy

σx

n∑
i=1

(yi − ȳ)(xi − x̄)

= σ2
y + r2

xy

σ2
y

σ2
x

σ2
x − 2rxy

σy

σx
σxσyrxy

= σ2
y + r2

xyσ2
y − 2r2

xyσ2
y

= σ2
y(1 − r2

xy)
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Sums of squares (residual, explainable, total)

RSS =
n∑

i=1
(yi − ŷi)2

ESS =
n∑

i=1
(ŷi − ȳ)2

TSS =
n∑

i=1
(yi − ȳ)2

Theorem TSS = RSS + ESS

The geometric interpretation of the theorem

In Rn, consider the plane P spanned by [1 1 · · · 1]T and [x1 x2 · · · xn]T .
Let C be the point (ȳ, . . . , ȳ), which lies on the line generated by [1 1 · · · 1]T
in P. If P is the point (y1, y2, . . . , yn) and P̂ is the point (ŷ1, ŷ2, . . . , ŷn), it
follows that P̂ is the projection of the point P on P . The vector from P to P̂ is
perpendicular to the vector from P̂ to C, so the triangle with vertices C, P , and
P̂ is a right triangle with a right angle at P̂ . The theorem is equivalent to the
Pythagorean theorem applied to the right triangle CPP̂ .

Proof of TSS = RSS + ESS Recall that
∑n

i=1 ei = 0 (equation 3) and∑n
i=1 eixi = 0 (equation 6).

TSS =
n∑

i=1
(yi − ȳ)2

=
n∑

i=1
((yi − ŷi) + (ŷi − ȳ))2

=
n∑

i=1
(yi − ŷi)2 +

n∑
i=1

(ŷi − ȳ)2 + 2
n∑

i=1
(yi − ŷi)(ŷi − ȳ)

= RSS + ESS + 2
n∑

i=1
(yi − ŷi)(ŷi − ȳ)

To complete the proof, it’s sufficient to prove that the boxed expression is 0.
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n∑
i=1

(yi − ŷi)(ŷi − ȳ) =
n∑

i=1
ei(ŷi − ȳ)

=
n∑

i=1
eirxy

σy

σx
(xi − x̄) using equation (7)

= rxy
σy

σx
(

n∑
i=1

eixi − x̄

n∑
i=1

ei)

= rxy
σy

σx
(0 − x̄ · 0)

= 0

Definition R2 = ESS
TSS = 1 − RSS

TSS
Theorem R2 = r2

xy

Proof By definition, TSS = nσ2
y.

ESS =
n∑

i=1
(ŷi − ȳ)2

=
n∑

i=1
r2

xy

σ2
y

σ2
x

(xi − x̄)2 using equation (7)

= r2
xy

σ2
y

σ2
x

(
n∑

i=1
(xi − x̄)2)

= r2
xy

σ2
y

σ2
x

· nσ2
x

= r2
xynσ2

y

Therefore, R2 = ESS
TSS = r2

xynσ2
y

nσ2
y

= r2
xy.

Theorem R2 = r2
yŷ

Proof sketch

• Show that the mean of xi − x̄ is 0.
• Use equation (7) to show that the mean of ŷi − ȳ is 0, which implies that

the mean of ŷi is ȳ.
• Use the bilinearity of covariance and equation (7) to show that σ2

ŷ = r2
xyσ2

y.
• Use the bilinearity of covariance to show that Cov(ŷ, y) = rxy

σy

σx
Cov(x, y).

• Use the definition of correlation in terms of covariance and variance to
conclude that r2

yŷ = r2
xy.
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Reference

Ordinary least squares, https://en.wikipedia.org/wiki/Ordinary_least_squares
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