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The purpose of these notes is to lay out the beginnings of a research program
which aims to explore a particular brand of non-classical theories inspired by
the QBist representation of quantum mechanics induced by a 3-design mea-
surement. For background, read https://arxiv.org/abs/2412.13505. The
crucial feature of such theories is that the validity of a set of probability assign-
ments P (Ei|ρ) on the outcomes of a privileged reference device is equivalent to
the assumption of a lower bound on the variance of a natural class of observ-
ables. In other words, the shape of state space is ultimately determined by an
uncertainty principle: the variance of any natural observable cannot be made
smaller than a certain amount, which morally speaking is a way of respecting
the uncreatedness of outcomes before measurement.

The ultimate goal is to motivate a re-derivation of quantum theory along
QBist principles. As one proceeds, however, there are many forks in the road,
places where in order to motivate our assumptions, it would be useful to explore
the consequences of alternative choices, both analytically and computationally.
What follows mingles assumptions, proofs, conjectures, and open questions.
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There is a measure-and-reprepare reference device R which is assumed to be in-
formationally complete. Denote by {Ei} the outcomes of the measurement, and
{σi} the corresponding preparations. The reference device may be characterized
in its own terms by a stochastic matrix

Pij ≡ P (Ei|σj). (2.1)

Let us put some initial restrictions on this matrix. We’ll take it to be symmetric
(P = PT ), and hence bistochastic. We also assume ∀i : P (Ei|σi) = const.
Probabilities for arbitrary measurements may be calculated according to the
QBist Born Rule

P (η|ρ) = P (η|σ)ΦP (E|ρ), (2.2)

where P (E|ρ) is short-hand for a column vector of probabilities P (Ei|ρ), and
P (η|σ) is short-hand for a row vector of conditional probabilities P (η|σi), η
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being some arbitrary outcome, and ρ being some arbitrary preparation. Here Φ
is a Born matrix, satisfying PΦP = P . We assume that we may take

Φ = αI + βJ, (2.3)

where J is the matrix of all 1’s, and that Q(E|ρ) = ΦP (E|ρ) is a vector of
quasi-probabilities, possibly negative, but summing to 1.

1. Since
∑

ij ΦijP (Ej |ρ) = 1, we must have α + nβ = 1 so that β = (1 −
α)
(
1
n

)
.

2. Notice that PΦP = αP 2+βJ = P . Since JPx = Jx, it follows that αPy+
βJy = y where y = Px ∈ col(P ), that is, y is some linear combination of
the columns of P . Denoting u = (1, . . . , 1)T , we have

Py =
1

α

[
y − β

(∑
i

yi

)
u

]
. (2.4)

In particular, for probability vectors P (E|ρ) ∈ col(P ),∑
j

P (Ei|σj)P (Ej |ρ) =
1

α
P (Ei|ρ) +

(
1− 1

α

)
1

n
, (2.5)

which shows that on probability vectors in its column space, P acts as
a depolarizing channel with parameter 1

α , mixing P (E|ρ) with the flat
probability vector.

3. Since αP 2 + βJ = P , using the spectral decomposition P =
∑

i λiviv
T
i ,

we have

α
∑
i

λ2i viv
T
i + βuuT =

∑
i

λiviv
T
i . (2.6)

Since P is bistochastic, u is an eigenvector with eigenvalue 1. Acting on the
left vTk and on the right with vk, we obtain αλ

2
k = λk, or λk(αλk − 1) = 0.

We conclude the possible eigenvalues of P are {1, α−1, 0}. We assumed
that ∀i : P (Ei|σi) = const. Thus

tr(P ) = nP (Ei|σi) =
∑
i

λi = 1 + (r − 1)α−1, (2.7)

where r = rank(P ), and so

P (Ei|σi) = n−1
(
1 + (r − 1)α−1

)
. (2.8)

4. PΦ projects onto col(P ). From PΦP = P , we have PΦPΦ = PΦ so
that PΦ is idempotent and thus a projector. Φ = αI + βJ is invertible,
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and thus PΦ projects onto col(P ). In fact since (PΦ)T = PΦ, it is an
orthogonal projection. Consistency with the QBist Born rule requires that

P (E|ρ) = P (E|σ)ΦP (E|ρ), (2.9)

and so we may without loss of generality consider only probability vectors
P (E|ρ) ∈ col(P ).

5. For an unbiased quantum 3-design, we have α = d + 1, β = − d
n , and the

rank r of P is d2.

3

Let x be an observable, which here means an assignment of numerical values to
the outcomes of the reference measurement. We assume that a probability vector
P (E|ρ) is valid if and only if the second moment of any observable x ∈ col(P )
is lower bounded. Further, we assume that like the second moment itself, the
lower bound is linear in P (E|ρ) and quadratic in x. In other words,

P (E|ρ) valid ⇐⇒ ∀x ∈ col(P ) :
∑
i

x2iP (Ei|ρ) ≥
∑
ijk

AijkxixjP (Ek|ρ) (3.1)

for some three-index tensor Aijk.

1. Rewriting the lower bound, we have

∑
ij

xi

[∑
k

(
δijδik −Aijk

)
P (Ek|ρ)

]
xj ≥ 0 ⇐⇒

∑
ij

xiB[ρ]ijxj ≥ 0.

(3.2)

Since B[ρ] ≥ 0 on col(P ) and PΦ = (PΦ)T = ΦP projects into col(P ), we
have C[ρ] = PΦB[ρ]PΦ ≥ 0. If we assume Aijk is symmetric in the first
two indices, then C[ρ] = C[ρ]T , and the question of the validity of P (E|ρ)
is transformed into the question of the positive-semidefiniteness of C[ρ].

2. What assumptions can we marshal to narrow down the reasonable choices
of Aijk, what natural symmetries might we impose? On the other hand,
suppose we fix some Aijk. What is the best way, analytically and com-
putationally, of charting out the state-space, the set of valid probability
vectors? In particular,

(a) Under what conditions is the state-space self-dual? Must any such
state-space be self-dual? In other words, suppose we have a valid
probability vector P (E|ρ). Bayes’ Rule tells us that

P (ρ|σi) = P (ρ|Ei) =
P (Ei|ρ)P (ρ)

P (Ei)
= γP (Ei|ρ). (3.3)
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Self-duality would mean that given some valid P (E|ρ),

∀τ : P (ρ|τ) = P (ρ|σ)ΦP (E|τ) = γP (E|ρ)ΦP (E|τ) ≥ 0. (3.4)

Conversely, if we have a valid response function P (τ |σ), i.e. such
that ∀ρ : P (τ |ρ) = P (τ |σ)ΦP (E|ρ) ≥ 0, then

∀η : P (η|τ) = P (η|σ)ΦP (E|τ) = γ−1P (η|σ)ΦP (τ |σ) ≥ 0. (3.5)

Note that in particular, P (σi|σi) = P (σi|Ei) = γP (Ei|σi). If we
assume that in fact ∀i : P (σi|σi) = 1, then

γ =
n

1 + (r − 1)α−1
. (3.6)

For an unbiased quantum 3-design, γ = n
d .

(b) An extremal probability vector is a valid probability vector which
cannot be written as a convex mixture of valid probability vectors
(in col(P )). Can we easily characterize the extremal states of the
theory directly in terms of Aijk? In terms of the eigenstructure of
C[ρ]? When is the variance bound saturated?

(c) Which state-spaces can support a a maximal simplex with r vertices
which lie on its boundary, that is, a SIC? What is the maximal size
d of a simplex of perfectly distinguishable states?

3. Let us assume that

Aijk = η
(
δij − δik − δjk

)
(3.7)

for some constant η. This is the case in quantum mechanics. In what
sense can we say that this the simplest possible choice? If we do make
this choice, we have for some arbitrary vector y,

B[Y ]ij =
∑
k

(
δijδik −Aijk

)
yk (3.8)

=
∑
k

(
δijδik − η

[
δij − δik − δjk

])
yk (3.9)

= δijyi − δijηȳ + ηyi + ηyj , (3.10)

where ȳ =
∑

i yi. Then

∑
ij

xiB[Y ]ijxj =
∑
i

x2i yi − nηȳ

 1

n

∑
i

x2i −
2

n

∑
i

xi
∑
j

xjyj

 . (3.11)

In particular, for a probabilities yi = P (Ei|ρ), we have

∑
ij

xiB[ρ]ijxj =
∑
i

x2iP (Ei|ρ)− nη

 1

n

∑
i

x2i −
2

n

∑
i

xi
∑
j

xjP (Ej |ρ)

 ,
(3.12)
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so that, by assumption, a valid probability vector P (E|ρ) must satisfy the
lower-bound on its second moment,

∀x ∈ col(P ) : ⟨X2|ρ⟩ ≥ nη
(
⟨X2|µ)− 2⟨X|µ⟩⟨X|ρ⟩

)
, (3.13)

where e.g. ⟨X2|ρ⟩ =
∑

i x
2
iP (Ei|ρ) and ∀i : P (Ei|µ) = 1

n .

For an unbiased quantum 3-design, η = 1
d+2

(
d
n

)
.

4. Let us now consider C[Y ] = PΦB[Y ]PΦ. On the one hand, PΦ = αP +

βJ . Let us assume that y ∈ col(P ), so that
∑

j P (Ei|σj)yj = 1
α

[
yi − βȳ

]
.

Then

C[Y ]il

=
∑
jk

[
αP (Ei|σj) + β

][
δjkyj − δjkηȳ + ηyj + ηyk

][
αP (Ek|σl) + β

]

=
∑
j

[
αP (Ei|σj) + β

]∑
k

[
αP (Ek|σl)δjkyj − αP (Ek|σl)δjkηȳ + αP (Ek|σl)ηyj + αP (Ek|σl)ηyk + βδjkyj − βδjkηȳ + βηyj + βηyk

]

=
∑
j

[
αP (Ei|σj) + β

][
αP (Ej |σl)yj − αP (Ej |σl)ηȳ + αηyj + αη

∑
k

P (El|σk)yk + βyj − βηȳ + nβηyj + βηȳ

]

=
∑
j

[
αP (Ei|σj) + β

][
αP (Ej |σl)yj − αP (Ej |σl)ηȳ + αηyj + ηyl − βηȳ + βyj − βηȳ + nβηyj + βηȳ

]

=
∑
j

[
αP (Ei|σj) + β

][
αP (El|σj)yj − αηȳP (Ej |σl) + (αη + β + nβη)yj + ηyl − βηȳ

]

=
∑
j

{
α
2
P (Ei|σj)P (El|σj)yj − α

2
ηȳP (Ei|σj)P (Ej |σl) + α(αη + β + nβη)P (Ei|σj)yj + αηP (Ei|σj)yl − αβηȳP (Ei|σj)

+ αβP (El|σj)yj − αβηȳP (Ej |σl) + β(αη + β + nβη)yj + βηyl − β
2
ηȳ

}

= α
2 ∑

j

P (Ej |σi)P (Ej |σl)yj − α
2
ηȳ

∑
j

P (Ei|σj)P (Ej |σl) + α(αη + β + nβη)
∑
j

P (Ei|σj)yj + αηyl − αβηȳ

+ αβ
∑
j

P (El|σj)yj − αβηȳ + β(αη + β + nβη)ȳ + nβηyl − nβ
2
ηȳ

= α
2 ∑

j

P (Ej |σi)P (Ej |σl)yj − αηȳ
(
P (Ei|σl) − β

)
+ (αη + β + nβη)

(
yi − βȳ

)
+ αηyl − αβηȳ

+ β
(
yl − βȳ

)
− αβηȳ + β(αη + β + nβη)ȳ + nβηyl − nβ

2
ηȳ

= α
2 ∑

j

P (Ej |σi)P (Ej |σl)yj − αηȳP (Ei|σl) + αηȳβ + (αη + β + nβη)yi − βȳ(αη + β + nβη) + αηyl

− αβηȳ + βyl − β
2
ȳ − αβηȳ + β(αη + β + nβη)ȳ + nβηyl − nβ

2
ηȳ

= α
2 ∑

j

P (Ej |σi)P (Ej |σl)yj − αηȳP (Ei|σl) + (αη + β + nβη)yi + (αη + β + nβη)yl − β(αη + β + nβη)ȳ.

Since β = (1−α)
(
1
n

)
, let κ = αη+β+nβη = β+ η. We arrive at last at

C[Y ]ij = α2
∑
m

P (Em|σi)P (Em|σj)ym − αηȳP (Ei|σj) + κyi + κyj − βκȳ,

(3.14)

and in particular for a probability vector y = P (E|ρ), we have

C[ρ]ij = α2
∑
m

P (Em|σi)P (Em|σj)P (Em|ρ)− αηP (Ei|σj) + κP (Ei|ρ) + κP (Ej |ρ)− βκ.

(3.15)
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For an unbiased quantum 3-design, α = (d + 1), β = − d
n , η = 1

d+2

(
d
n

)
,

and χ = 1
2

(
n
d

) (
d+2
d+1

)
so that L[ρ]ij = χC[ρ]ij is the probabilistic repre-

sentation of taking the Jordan product with ρ:

L[ρ]ij (3.16)

=
1

2

{
(d+ 1)(d+ 2)

(n
d

)∑
k

P (Ek|σi)P (Ek|σj)P (Ek|ρ)− P (Ei|σl)− P (Ei|ρ)− P (Ej |ρ)−
d

n

}
.

5. What further symmetries can we impose in order to fix the constants, and
on what grounds?

(a) Let Q(E|σ) = ΦP (E|σ) and Q(E|ρ) = ΦP (E|ρ) so that

[
L[ρ]Φ

]
ij
= χ

{
α2
∑
m

P (Em|σi)Q(Em|σj)P (Em|ρ)− αηQ(Ei|σj) + κP (Ei|ρ) + κQ(Ej |ρ)− βκ

}
.

(3.17)

Suppose we demand commutativity : L[ρ]ΦP (E|τ) = L[τ ]ΦP (E|ρ).
We have

L[ρ]ΦP (E|τ) = χ

{
α2
∑
m

P (Em|σi)P (Em|τ)P (Em|ρ)− αηP (Ei|τ) + κP (Ei|ρ) + κγ−1P (ρ|τ)− βκ

}
(3.18)

L[τ ]ΦP (E|ρ) = χ

{
α2
∑
m

P (Em|σi)P (Em|ρ)P (Em|τ)− αηP (Ei|ρ) + κP (Ei|τ) + κγ−1P (ρ|τ)− βκ

}
,

(3.19)

from which we conclude that η = − β
α+1 .

(b) By Bayes’s rule, we have P (ρ|σ) = γP (E|ρ). If we assume self-
duality,

P (ρ|ρ) = P (ρ|σ)ΦP (E|ρ) = γP (E|ρ)ΦP (E|ρ) (3.20)

= γ

[
α
∑
i

P (Ei|ρ)2 + β

]
. (3.21)

If we assume P (ρ|ρ) = 1, then∑
i

P (Ei|ρ)2 =
1

α

(
γ−1 − β

)
. (3.22)

For an unbiased quantum 3-design, a pure-state probability-assignment
satisfies

∑
i P (Ei|ρ)2 =

(
d
n

)
2

d+1 .
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(c) Let us now consider P̃ (E|ρ2) = L[ρ]ΦP (E|ρ), or

P̃ (Ei|ρ2) (3.23)

= χ

{
α2
∑
m

P (Em|σi)P (Em|ρ)2 + (κ− αη)P (Ei|ρ) + κγ−1P (ρ|ρ)− βκ

}
.

If we demand that P (ρ|ρ) = 1 and moreover that P (Ei|ρ) = P̃ (Ei|ρ2)
(in quantum theory, this is the demand that ρ = ρ2) then

P (Ei|ρ) =
(

1

χ−1 − κ+ αη

)[
α2
∑
m

P (Em|σi)P (Em|ρ)2 + κ(γ−1 − β)

]
.

(3.24)

Summing over i on both sides, we have(
1

χ−1 − κ+ αη

)[
α2
∑
m

P (Em|ρ)2 + nκ(γ−1 − β)

]
= 1, (3.25)

and substituting
∑

i P (Ei|ρ)2 = 1
α

(
γ−1 − β

)
, we find that χ−1−κ+

αη = α(γ−1 − β) + nκ(γ−1 − β), which fixes

χ =
γ(α+ 1)

2α
. (3.26)

Now

L[Y ]ij (3.27)

=
1

2
γ

{
α(α+ 1)

∑
m

P (Em|σi)P (Em|σj)ym −
(
α− 1

n

)(
ȳP (Ei|σj) + yi + yj

)
−
(
α− 1

n

)2

ȳ

}
.

(d) We can go further using P (ρ|ρ) = γP (E|ρ)ΦP (E|ρ) = 1 by substi-
tuting in P (E|ρ) = P̃ (E|ρ2).

1 = γ
∑
i

Q(Ei|ρ)
(

1

χ−1 − κ+ αη

)[
α2
∑
m

P (Em|σi)P (Em|ρ)2 + κ(γ−1 − β)

]
(3.28)

=

(
γ

χ−1 − κ+ αη

)[
α2
∑
m

P (Em|ρ)3 + κ(γ−1 − β)

]
, (3.29)

so that∑
m

P (Em|ρ)3 =
1

α2

[(
χ−1 − κ+ αη

γ

)
− κ(γ−1 − β)

]
(3.30)

=
((α− 1)γ + n)((α− 1)γ + 2n)

α(α+ 1)γ2n2
. (3.31)
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For an unbiased quantum 3-design,
∑

i P (Ei|ρ)3 =
(
d
n

)2 6
(d+1)(d+2) .

Can we go in reverse and show that if
∑

i P (Ei|ρ)2 and
∑

i P (Ei|ρ)3
equal the required values (and P (E|ρ) ∈ col(P )), then P (Ei|ρ) =
P̃ (Ei|ρ2)? Can we have an independent characterization of the pure
states of the theory and thus show that the pure states are completely
characterized by these considerations?

(e) Supposing we can pin down the state-space as an intersection of 2-
norm and 3-norm spheres and the privileged subspace col(P ), we
could hope to interrogate self-duality by studying p-norm cones. Hölder’s
inequality tells us that for real numbers p, q ≥ 1 such that 1

p +
1
q = 1,

we have for x, y ∈ Rn,Cn∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣ ≤ ∥x∥p∥y∥q (3.32)

with equality when ∀i : |xi|p = λ|yi|q for λ ≥ 0. In the case of p =
1, q = ∞, equality holds if x, y are have only one non-zero component
in the same place. This can be used to establish the dual of cone
whose base is a p-norm sphere. Moreover, the dual of an intersection
of cones is the Minkowski sum of their duals: (C1 ∩C2)

∗ = C∗
1 +C∗

2 ,
and the same goes for an intersection with a subspace. This would
be the jumping off place for some analysis.

(f) What if we demand that in fact L[ρ] is a Jordan product matrix?
Recall that the Jordan product is completely characterized by its
commutativity and the condition that

[
L[ρ], L[ρ2

]
= 0. For us, this

means on the one hand, L[ρ]ΦP (E|τ) = L[τ ]ΦP (E|ρ), and on the
other hand,

[
L[ρ]Φ,L[ρ2]Φ

]
= 0. We’ve already explored commu-

tativity. Direct calculation of
[
L[ρ], L[ρ2

]
= 0 is not particularly

illuminating. But let’s think instead about structure-coefficients.

A Euclidean Jordan algebra is a vector space V equipped with an
bilinear product x ◦ y with a “compatible” inner product ⟨x, y⟩. The
Jordan product ◦ satisfies

x ◦ y = y ◦ x (3.33)

x ◦ (y ◦ x2) = (x ◦ y) ◦ x2. (3.34)

Let {ei} be a basis for V. We define structure-coefficients Jijk to
satisfy

ej ◦ ek =
∑
i

Jijkei. (3.35)

What symmetries must Jijk satisfy? Since x ◦ y = y ◦ x, we have in
particular

ej ◦ ek =
∑
i

Jijkei =
∑
i

Jikjei = ek ◦ ej . (3.36)
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We conclude Jijk = Jikj . A compatible inner product satisfies ⟨x ◦
y, z⟩ = ⟨x, y ◦ z⟩. On the one hand,

⟨ei ◦ ej , ek⟩ =

〈∑
l

Jlijel, ek

〉
=
∑
l

Jlij⟨el, ek⟩ = Jkij . (3.37)

On the other hand,

⟨ei, ej ◦ ek⟩ =

〈
ei,
∑
l

Jljkel

〉
=
∑
l

Jljk⟨ei, el⟩ = Jijk. (3.38)

We conclude that Jijk = Jkij . Thus in fact Jijk must be totally
symmetric. Finally, on the one hand,

ej ◦ ej =
∑
i

Jijjei (3.39)

ek ◦ (ej ◦ ej) =
∑
il

JiklJljjei (3.40)

ej ◦ (ek ◦ (ej ◦ ej)) =
∑
ilm

JijmJmklJljjei, (3.41)

while on the other hand,

(ej ◦ ek) ◦ (ej ◦ ej) =
∑
ilm

JimlJmjkJljjei. (3.42)

We conclude that

∀i, j, k :
∑
lm

JijmJmklJljj =
∑
lm

JimlJmjkJljj . (3.43)

In our case, in analogy to quantum theory, since

L[Y ]ij = χ

{
α2
∑
m

P (Em|σi)P (Em|σj)ym − αηȳP (Ei|σj) + κyi + κyj − βκȳ

}
,

we ought to take Jijk =
[
L[σk]Φ

]
ij
, that is,

Jijk = χ

{
α2
∑
m

P (Em|σi)Q(Em|σj)Q(Em|σk)− αηQ(Ei|σj) + κQ(Ei|σk) + κ
(
αQ(Ej |σk) + β

)
− βκ

}
.

If Jijk satisfies the required identity, then our theory has a Jordan al-
gebraic structure. Writing this out in terms of P (Ei|σj) is laborious,
and not obviously illuminating. I can give expressions on request.
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(g) One assumption we could make is homogeneity, which is automati-
cally a feature of Euclidean Jordan algebras. Essentially, any full-
rank state can be mapped to any other by some invertible map that
preserves the structure of the “cone.” Quantum mechanically the
essential insight is that if ρ is full-rank, then we can contemplate the
Kraus update map τ →

√
ρ−1τ

√
ρ−1. Clearly if τ = ρ, we end up

with the identity. Then if we want to end up at some arbitrary state
σ, we can apply the update map τ →

√
στ

√
σ.

It turns out for an element of a Jordan algebra Y , the map τ → Y τY
is represented by P [Y ] = 2L[Y ]2−L[Y 2], where L[Y ] takes the Jordan
product with Y . This is called the quadratic representation of Y .
Quantum mechanically, on the one hand,

L[Y ]ij =
∑
l

yl
∑
k

Φklℜ[tr(Eiσjσk)], (3.44)

and on the other hand,

L[Y 2]ij =
∑
ab

yayb
∑
klrs

ΦklΦraΦsbℜ[tr(Eiσjσk)]ℜ
[
tr(Elσrσs)

]
,

(3.45)

from which one can derive

Pxy =
∑
ab

P (Ea|ρ)P (Eb|ρ)× (3.46)

∑
jkrs

ΦjkΦraΦsb

{
2ℜ[tr(Exσjσr)]ℜ[tr(Ekσyσs)]−ℜ[tr(Exσyσj)]ℜ

[
tr(Ekσrσs)

]}
.

(3.47)

The expression can be worked out in terms of probabilities, but again
without an obvious insight awaiting.

6. What is the size of a maximal simplex of perfectly distinguishable states:
in other words, how can we determine d?

Since

L[ρ]ΦP (E|τ) = χ

{
α2
∑
m

P (Em|σi)P (Em|τ)P (Em|ρ)− αηP (Ei|τ) + κP (Ei|ρ) + κγ−1P (ρ|τ)− βκ

}
,

(3.48)

we have

uTL[ρ]ΦP (E|τ) = χ

{
α2
∑
m

P (Em|τ)P (Em|ρ)− αη + κ+ nκγ−1P (ρ|τ)− nβκ

}
(3.49)
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= χ

{
α2
∑
m

P (Em|τ)P (Em|ρ) + βα+ nκγ−1P (ρ|τ)

}
(3.50)

= χ

{
α
∑
m

P (Em|τ)
[
αP (Em|ρ) + β

]
+ nκγ−1P (ρ|τ)

}
(3.51)

= χ

{
αγ−1P (τ |ρ) + nκγ−1P (ρ|τ)

}
(3.52)

= χγ−1(α+ nκ)P (τ |ρ) = P (τ |ρ). (3.53)

Incidentally, it is worth considering in this context the symmetry P (τ |ρ) =
P (ρ|τ) which isn’t necessarily taken for granted. Assuming this implies

0 = α2
∑
m

P (Em|τ)P (Em|ρ)2 − α2
∑
m

P (Em|ρ)P (Em|τ)2 + κP (ρ|ρ)− κP (τ |τ).

(3.54)

In any case, we can then consider, for example,

L[ρ]ΦP (E|τ) = 0. (3.55)

In other words, we can ask: what does the null-space of L[ρ] look like?
From L[ρ]ΦP (E|τ) = 0, we find that P (E|τ) must statisfy

P (Ei|τ) =
1

αη

{
α2
∑
m

P (Em|σi)P (Em|τ)P (Em|ρ) + κP (Ei|ρ) + κγ−1P (ρ|τ)− βκ

}
.

(3.56)

What if we further assume ρ, τ are pure? How many solutions do such
equations have?

Finally, in 3-design quantum theory, we have

tr(X2ρ) =

(
d

n

)∑
ijkl

xixjℜ[tr(Eiσjσk)]ΦklP (El|ρ) =
(
d

n

)
xTL[ρ]x,

(3.57)

which implies the existence of an orthonormal basis measurement of X.
What milage can we get out of that?

7. What can we say about “time evolution,” or more specifically, the con-
tinuous symmetries of the pure-states? On the one hand, to the extent
that we have defining conditions on pure-states, we can derive conditions
for a quasi-stochastic matrix to preserve pure-states. On the other hand,
assuming quantum mechanics already, to represent the time derivative in
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the von Neumann equation, we need a probabilistic representation of the
commutator [A,B]. This can be derived from the imaginary part of the
triple products. To what extent can these imaginary parts be nailed down?
We have

tr(Ei[A,B]) =
∑
km

tr(EkA)tr(EmB)

∑
jl

ΦjkΦlm(2i)ℑ
[
tr(Eiσjσl)

] .
(3.58)

Moreover,

tr(Eiσjσl) =
d

n
⟨ψi|ψj⟩⟨ψj |ψk⟩⟨ψk|ψi⟩ =

√
n

d
tr(Eiσj)tr(Ejσk)tr(Ekσi)e

i(θij+θjk+θki),

(3.59)

and since |tr(Eiσjσk)|2 = ℜ
[
tr(Eiσjσk)

]2
+ℑ

[
tr(Eiσjσk)

]2
, the real-part

determines the imaginary-part up to sign:

ℑ
[
tr(EiσjΠk)

]
= ±

√
n

d
P (Ei|σj)P (Ej |σk)P (Ek|σi)−ℜ

[
tr(Eiσjσk)

]2
.

(3.60)

The choice of signs is not arbitrary since ℑ
[
tr(EiσjΠk)

]
must be antisym-

metric. Will any appropriate choice of signs work?

4

Finally, supposing we can prove most of everything we want to prove on the basis
of these considerations, there remains the possibility that we end up with per-
fectly good theories that act quite like quantum mechanics, but the P (Ei|σj)’s
just don’t correspond to quantum 3-design probabilities. It feels like we’re miss-
ing some simple, powerful, killer assumption. Could we assume the existence of
a SIC? (Can we glue SICs together to form 3-designs? Are there SIC fiducials
whose orbit under the Clifford group gives a 3-design?) More generally, is there
some way of characterizing 3-designs themselves in QBist terms? In this con-
nection, perhaps it is worth looking back at the literature on shadow estimation,
especially Huangjun Zhu’s recent papers. There incidentally, the focus is not
so much on a lower bound on the variance of an observable (according to the
reference device), but on an upper bound. David Gross has interesting things
to say about the symmetries of a 3-design set:

Theorem 1. Let {ψi}ni=1 ⊂ Cd be a set of unit vectors. Let L ∈ End(Herm(H))
be a linear map on Hermitian operators that permutes the projectors {|ψi⟩⟨ψi}ni=1.

1. If {ψi} is a complex-projective 1-design, then L is unital, i.e. L(I) = I.
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2. If {ψi} is a complex-projective 2-design, then L is orthogonal and trace-
preserving.

3. If {ψi} is a complex-projective 3-design, then L is of the form L = U ·U†,
where U is either a unitary or antiunitary.

But what does this mean for us?
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