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1 Procession

A (complex-projective, unbiased) t-design is a set of pure quantum states {σi}ni=1

which satisfy

1

n

∑
i

σ⊗t
i =

∫
|ψ⟩⟨ψ|⊗tdψ =

(
d+ t− 1

t

)−1

Πsymt . (1)

1-designs, rescaled, form measurements. 2-designs include SICs and MUBs.
3-designs will concern us here. Let us consider a measure-and-prepare device
which performs measurement {Ei = d

nσi} and conditionally prepares a state
{σi} where the states {σi} form an 3-design. Note that a t-design is also a
(t− 1)-design, so that indeed, {Ei} is a measurement. Moreover, from the fact
that the device forms a 2-design, it is informationally-complete: the probabilities
P (Ei|ρ) = tr(Eiρ) suffice to pick out a density matrix. But crucially, not
all probability distributions correspond to valid states (they map to matrices
with negative eigenvalues). So how can we characterize the valid probability-
assignments to the reference device? Here the 3-design property comes into
play.

Consider the agreement-probabilities for t devices

P (agree|ρ1, . . . , ρt) =
n∑

i=1

t∏
j=1

P (Ei|ρj) = tr

(
n∑

i=1

E⊗t
i ⊗t

j=1 ρj

)
(2)

=
dt

nt−1

(
d+ t− 1

t

)−1
1

t!

∑
π∈St

tr(Tπ ⊗t
j=1 ρj).

To evaluate this, note that

tr

(
(X ⊗ Y )

∑
ab

|b, a⟩⟨a, b|

)
=
∑
ab

⟨a|X|b⟩⟨b|Y |a⟩ = tr(XY ) (3)

tr

(
(X ⊗ Y ⊗ Z)

∑
abc

|b, c, a⟩⟨a, b, c|

)
=
∑
abc

⟨a|X|b⟩⟨b|Y |c⟩⟨c|Z|a⟩ = tr(XY Z).

(4)

On the one hand,

P (agree|ρ1, ρ2) =
1

d+ 1

(
d

n

)[
tr(ρ1)tr(ρ2) + tr(ρ1ρ2)

]
≤
(
d

n

)
2

d+ 1
, (5)
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which is maximized when ρ1 = ρ2 = ρ pure. On the other hand,

P (agree|ρ1, ρ2, ρ3) =
1

(d+ 1)(d+ 2)

(
d

n

)2 [
tr(ρ1)tr(ρ2)tr(ρ3) + tr(ρ1)tr(ρ2ρ3)

(6)

+ tr(ρ2)tr(ρ1ρ3) + tr(ρ3)tr(ρ1ρ2) + tr(ρ1ρ2ρ3) + tr(ρ1ρ3ρ2)
]

≤
(
d

n

)2
6

(d+ 1)(d+ 2)
,

which again is maximized when ρ1 = ρ2 = ρ3 = ρ pure. Consider the following
lemma:

Lemma 1. A quantum state ρ is pure if and only if tr(ρ2) = tr(ρ3) = 1.

Proof. Let {λi} be the eigenvalues of ρ. tr(ρ2) = tr(ρ3) = 1 means that
∑

i λ
2
i =∑

i λ
3 = 1. On the one hand,

∑
i λ

2
i = 1 implies that ∀i : −1 ≤ λi ≤ 1. On

the other hand,
∑

i λ
3
i ≤

∑
i λ

2
i with equality if and only if ∀i : λi ∈ {0, 1}. But

since the whole sum must be 1, we must have exactly one λi = 1 and the rest
0. Thus ρ is a rank-1 projector, and hence a pure state.

We conclude that we can characterize pure-states by the following equations

∀i : P (Ei|ρ) ≥ 0 (7)∑
i

P (Ei|ρ) = 1 (8)

∑
i

P (Ei|ρ)2 =

(
d

n

)
2

d+ 1
(9)

∑
i

P (Ei|ρ)3 =

(
d

n

)2
6

(d+ 1)(d+ 2)
, (10)

with the caveat that P (E|ρ) ∈ col(P ), where Pij = P (Ei|σj) = tr(Eiσj). Why
this last condition? The reason is that a 3-design representation is necessarily
overcomplete—indeed, n ≥ 1

2d
2(d + 1)— and in our derivation, we’ve assumed

that all probabilities P (Ei|ρ) are obtained from tr(Eiρ). Let E be the matrix
whose rows are (Ei| and S be the matrix whose columns are |σi) where |X) =
(X⊗I)

∑
i |i, i⟩ = vec(X). On the one hand, P (E|ρ) = E|ρ); on the other hand,

P = ES, which is a full-rank factorization and thus the columns of E form a
basis for the column-space of P . Therefore our proof becomes if-and-only if as
long as P (E|ρ) ∈ col(P ).

It is worth noting that we can motivate the restriction that P (E|ρ) ∈ col(P )
on QBist grounds. Let the Born matrix Φ be any matrix satisfying PΦP =
P ⇐⇒ SΦE = I. Then the Born rule appears as

P (Ai|ρ) = tr(Aiρ) = (Ai|SΦE|ρ) =
∑
jk

P (Ai|σj)ΦjkP (Ek|ρ), (11)
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a deformation of the law of total probability. In particular, P (Ei|ρ) =
∑

jk P (Ei|σj)ΦjkP (Ek|ρ).
Thus for consistency’s stake, we ought to require P (E|ρ) = PΦP (E|ρ). PΦP =
P implies that PΦ is a projector. On what subspace, though? For a 2-design
1
n

∑
i σ

⊗2
i = 1

d(d+1) (I ⊗ I + S) so that

1

n

∑
i

σi ⊗ σT
i =

1

d(d+ 1)
(I ⊗ I + |I)(I|) . (12)

For a pure state σ, |σ)(σ| = σ ⊗ σT , and so letting Ei =
d
nσi, we arrive at the

resolution of the identity I = (d + 1)
∑

i |σi)(Ei| − |I)(I|, which demonstrates
informational-completeness. Comparing this to SΦE = I =

∑
ij Φij |σi)(Ej |, it

follows that we may take Φ = (d+ 1)I − d
nJ . Since Φ is full rank, PΦ projects

onto col(P ).
So the contour of quantum state-space according to a 3-design is given by

the intersection of the non-negative orthant, a 1-norm sphere, a 2-norm sphere,
and a 3-norm sphere of prescribed radii, and a d2 dimensional subspace: col(P ).
Alternatively, we can derive a single equation picking out pure probability-
assignments from the demand that ρ = ρ2. From the resolution of the identity,
ρ =

∑
ij ΦijP (Ej |ρ)σi, we have

P (Ei|ρ) =
∑
km

P (Ek|ρ)P (Em|ρ)
∑
jm

ΦjkΦlmℜ
[
tr(Eiσjσl)

]
, (13)

where the real-part comes from tr(Eiσjσl)+tr(Eiσlσj) = tr(Eiσjσl)+tr(Eiσjσl)
∗ =

2ℜ[tr(Eiσjσl)]. Let M3 = 1
n

∑
i σ

⊗3
i so that

P (Ei, Ej , Ek|M3) =
1

n

∑
m

P (Ei|σm)P (Ej |σm)P (Ek|σm) (14)

=
1

(d+ 1)(d+ 2)

(
d

n2

)[
d

n
+ P (Ej |σk) + P (Ei|σj) + P (Ei|σk) + 2ℜ

[
tr(Eiσjσk)

]]
,

and therefore

ℜ
[
tr(Eiσjσk)

]
(15)

=
1

2

[
(d+ 1)(d+ 2)

(n
d

)∑
m

P (Ei|σm)P (Ej |σm)P (Ek|σm)− P (Ej |σk)− P (Ei|σj)− P (Ei|σk)−
d

n

]
.

Our condition for pure-statehood then simplifies to

P (Ei|ρ) =
1

2

[
1

2
(d+ 1)(d+ 2)

(n
d

)∑
m

P (Ei|σm)P (Em|ρ)2 − d

n

]
, (16)

which we note automatically implies P (E|ρ) ∈ col(P ).
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In fact, we can do even better, and derive a condition for the validity of any
state, pure or mixed. We note that ℜ

[
tr(Eiσjσk)

]
are essentially the structure-

coefficients for the Jordan product A ◦B = 1
2 (AB +BA),

tr(EiA ◦B) =
1

2

(
tr(EiAB) + tr(EiBA)

)
=
∑
km

tr(EkA)tr(EmB)
∑
jl

ΦjkΦlmℜ
[
tr(Eiσjσl)

]
.

(17)

The linear operator L[ρ] which performs the Jordan product (and which acts
on vectorized states) is L[ρ] = 1

2 (ρ⊗ I + I ⊗ ρT ). The matrix

L[ρ]ij = tr(EiL[ρ](σj)) =
d

n
(σi|L[ρ]|σj) (18)

=
∑
kl

ℜ[tr(Eiσjσk)]ΦklP (El|ρ) (19)

does the same on e.g. probability vectors:

P̃ (E|ρ ◦ τ) = EL[ρ]|τ) = EL[ρ]SΦE|τ) = L[ρ]ΦP (E|τ), (20)

where the tilde recalls that P̃ (E|ρ ◦ τ) might not be a normalized probability
distribution. Note that L[ρ] does not depend on any redundancy in P (E|ρ).
We find after substitution that

L[ρ]ij =
1

2

[
(d+ 1)(d+ 2)

(n
d

)∑
m

P (Em|σi)P (Em|σj)P (Em|ρ)− P (Ei|σj)− P (Ei|ρ)− P (Ej |ρ)−
d

n

]
.

(21)

Now clearly, ρ ≥ 0 ⇐⇒ L[ρ] ≥ 0. Moreover, L[ρ] ≥ 0 ⇐⇒ L[ρ] ≥ 0. To see this
note that if {|fi)} is a frame with dual elements {(f̃i|} such that

∑
i |fi)(f̃i| =∑

i |f̃i)(fi| = I, we can write an arbitrary operator A =
∑

ij(fi|A|fj) |f̃i)(f̃j |,
where, considering the matrix of coefficients Af

ij = (fi|A|fj), Af ≥ 0 iff A ≥ 0,

since
∑

ij x
∗
i (fi|A|fj)xj = y†Ay ≥ 0. We thus have a condition for statehood,

pure or mixed: L[ρ] ≥ 0, which again only depends on reference device proba-
bilities.

Finally, let us give an interpretation of this last result. Consider that if
X =

∑
i xiEi is some arbitrary observable, it follows that

∀X : tr(X2ρ) =

(
d

n

)∑
ijkl

xixjℜ[tr(Eiσjσk)]ΦklP (El|ρ) ≥ 0 ⇐⇒ ρ ≥ 0, (22)

which is immediately equivalent to L[ρ] ≥ 0. Again substituting in ℜ[tr(Eiσjσk)]
yields a condition on valid P (E|ρ)

∀{xi} :
∑
i

∑
j

P (Ei|σj)xj

2

P (Ei|ρ) ≥
d

(d+ 1)(d+ 2)

[
1

n

∑
ij

xiP (Ei|σj)xj + 2⟨X|µ⟩⟨X|ρ⟩+ d⟨X|µ⟩2
]
,

(23)
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where e.g. ⟨X|ρ⟩ =
∑

i xiP (Ei|ρ), and ∀i : P (Ei|µ) = 1
n . If we make the sim-

plifying assumption that x ∈ col(P ), using the 2-design property, this simplifies
to

∀{xi} ∈ col(P ) :
∑
i

x2iP (Ei|ρ) ≥
d

d+ 2

(
⟨X2|µ⟩ − 2⟨X|µ⟩⟨X|ρ⟩

)
, (24)

where e.g. ⟨X2|µ⟩ = 1
n

∑
i x

2
i . Notice that we are considering the second-

moment with respect to the reference device as opposed to a von Neumann
measurement (although the inequality is saturated iff tr(X2ρ) = 0). Thus the
shape of quantum state-space can be understood in terms of a kind of uncer-
tainty principle: a valid probability-assignment to the reference device implies
a certain minimum variance to any observable in col(P ).

2 Reversion

We begin in a formless void without yet quantum mechanics.
Assumption 1: There is a reference device characterized by a stochastic

matrix Pij = P (Ei|σj) where P is symmetric and hence bistochastic.
Assumption 2: We assume that Φ = αI + βJ is a Born matrix for P , sat-

isfying PΦP = P , and that Q(E|ρ) = ΦP (E|ρ) are quasi-probabilities, possibly
negative, summing to 1. Here J is the matrix of all 1’s.

On the one hand, since
∑

ij ΦijP (Ej |ρ) = 1, we must have α + nβ = 1 so

that β = (1− α)
(
1
n

)
. On the other hand,

PΦP = αP 2 + βJ = P. (25)

Noting that JPx = Jx, we have αP (Px) + βJ(Px) = Px. Letting y = Px ∈
col(P ) and u = (1, . . . , 1)T , we have

αPy + β

(∑
i

yi

)
u = y =⇒ Py =

1

α

[
y − β

(∑
i

yi

)
u

]
. (26)

In particular, for probabilities P (E|ρ) ∈ col(P ),∑
j

P (Ei|σj)P (Ej |ρ) =
1

α
P (Ei|ρ) +

(
1− 1

α

)
1

n
: (27)

in other words, for probability-assignments in its column space, P acts as a
depolarizing channel. We note that PΦ projects onto col(P ).

Assumption 3: A probability-assignment P (E|ρ) is valid if and only if for
any observable x ∈ col(P ), the second-moment with respect to the reference
device satisfies a lower bound. Further we assume that like the second-moment
itself, the lower bound is linear in P (E|ρ) and quadratic in x.
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We can characterize the lower bound in terms of a three-index tensor Aijk

such that a valid P (E|ρ) satisfies

∀{xi} ∈ col(P ) :
∑
i

x2iP (Ei|ρ) ≥
∑
ijk

AijkxixjP (Ek|ρ), (28)

or

∀{xi} ∈ col(P ) :
∑
ij

xi

[∑
k

(
δijδik −Aijk

)
P (Ek|ρ)

]
xj ≥ 0. (29)

Let B[ρ]ij =
∑

k

(
δijδik − Aijk

)
P (Ek|ρ). Since B[ρ] ≥ 0 on col(P ), and PΦ =

(PΦ)T projects onto that subspace, we have

C[ρ] = PΦB[ρ]PΦ ≥ 0 (30)

simplicter iff P (E|ρ) is a valid state. Indeed, if we choose Aijk to be symmetric in
the first two indices, then C[ρ] will be postive semi-definite. We’ve thus managed
to translate the validity of P (E|ρ), expressed in terms of a lower bound on the
second-moment of any observable with respect to the reference device, into the
postive-semidefiniteness of a certain matrix associated to P (E|ρ).

Assumption 4: We assume that Aijk = η
(
δij − δik − δjk

)
.

Substituting this simple form for Aijk into the expression for C[ρ] yields

C[ρ]ij = α2
∑
k

P (Ek|σi)P (Ek|σj)P (Ek|ρ)− αηP (Ei|σj) + κP (Ei|ρ) + κP (Ej |ρ)− βκ,

(31)

where κ = β + η.

Now let α = (d+ 1), β = − d
n , η = 1

d+2

(
d
n

)
, and χ = 1

2

(
n
d

) (
d+2
d+1

)
. Then

L[ρ]ij = χC[ρ]ij (32)

=
1

2

{
(d+ 1)(d+ 2)

(n
d

)∑
k

P (Ek|σi)P (Ek|σj)P (Ek|ρ)− P (Ei|σl)− P (Ei|ρ)− P (Ej |ρ)−
d

n

}
,

is precisely the matrix we derived earlier, which represents taking the Jordan
product with ρ. In other words, if P (Ei|σj) in fact characterizes a quantum
3-design, then L[ρ]ij = tr

(
Ei

[
1
2 (σjρ+ ρσj)

])
.

Next steps:

• The Jordan product is completely characterized by its commutativity and
the condition that

[
L[ρ], L[ρ2

]
= 0. For us, this means on the one hand,

L[ρ]ΦP (E|τ) = L[τ ]ΦP (E|ρ), and on the other hand,
[
L[ρ]Φ,L[ρ2]Φ

]
= 0.

(Moreover, a Euclidean Jordan algebra satisfies ∀A,B,C ∈ V : ⟨L[A]B,C⟩ =
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⟨B,L[A]C⟩ for a choice of inner product on the underlying vector space
V.) Does any

L[ρ]ij = χ

{
α2
∑
k

P (Ek|σi)P (Ek|σj)P (Ek|ρ)− αηP (Ei|σj) + κP (Ei|ρ) + κP (Ej |ρ)− βκ

}
(33)

for arbitrary symmetric, stochastic, depolarizing P (E|σ), given the ap-
propriate choices of constants, satisfy the Jordan product conditions? In
other words, have we found an alternative way of characterizing (some
subset of) the Euclidean Jordan algebras? A great deal of tedious algebra
lies in between resolving this yes or no. Suppose the answer is yes. Recall
that all EJA’s are direct sums of the simple EJA’s: Sym(d,R), Herm(d,C),
Herm(d,H), Herm(3,O), and R×Rd−1. Then the choice of quantum the-
ory over C is likely no simpler than the condition that P (Ei|σj) can be
represented as tr(Eiσj) for a 3-design {σi} in Hd. On the other hand,
suppose the answer is no. Then the two defining conditions on the Jor-
dan product translate into restrictions on the probabilities P (Ei|σj). This
could pick out a whole class of EJA’s. Or if we’re unreasonably lucky, it
might pick out quantum theory over C specifically, and thus providing
a characterization of 3-designs themselves entirely in terms of reference
device probabilities P (Ei|σj).

• Suppose instead we want to derive the Jordan structure. Answering the
aforementioned question will likely suggest the best way of doing that. But
we can already ask, for example: given some Aijk alone (taking the simple
form or not), a) can we characterize the extremal probability distributions?
b) can we characterize its dual (the space of non-negative linear functionals
of the form P (η|σ)Φ)? Must such a state space be self-dual? Can we then
show that iff P (E|ρ) is extreme χC[ρ]ΦP (E|ρ) = P (E|ρ), for instance?
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