QBuki Notes on Reconstruction

written by heyredhat on Functor Network original link: https://functor.network/user/1704/entry/702

1 Procession

A (complex-projective, unbiased) t-design is a set of pure quantum states $\{\sigma_i\}_{i=1}^n$ which satisfy

$$\frac{1}{n} \sum_{i} \sigma_{i}^{\otimes t} = \int |\psi\rangle\langle\psi|^{\otimes t} d\psi = \binom{d+t-1}{t}^{-1} \Pi_{\text{sym}^{t}}.$$
 (1)

1-designs, rescaled, form measurements. 2-designs include SICs and MUBs. 3-designs will concern us here. Let us consider a measure-and-prepare device which performs measurement $\{E_i = \frac{d}{n}\sigma_i\}$ and conditionally prepares a state $\{\sigma_i\}$ where the states $\{\sigma_i\}$ form an 3-design. Note that a t-design is also a (t-1)-design, so that indeed, $\{E_i\}$ is a measurement. Moreover, from the fact that the device forms a 2-design, it is informationally-complete: the probabilities $P(E_i|\rho) = \operatorname{tr}(E_i\rho)$ suffice to pick out a density matrix. But crucially, not all probability distributions correspond to valid states (they map to matrices with negative eigenvalues). So how can we characterize the valid probability-assignments to the reference device? Here the 3-design property comes into play.

Consider the agreement-probabilities for t devices

$$P(\text{agree}|\rho_{1},\dots,\rho_{t}) = \sum_{i=1}^{n} \prod_{j=1}^{t} P(E_{i}|\rho_{j}) = \text{tr}\left(\sum_{i=1}^{n} E_{i}^{\otimes t} \otimes_{j=1}^{t} \rho_{j}\right)$$

$$= \frac{d^{t}}{n^{t-1}} {d+t-1 \choose t}^{-1} \frac{1}{t!} \sum_{\pi \in S_{t}} \text{tr}(T_{\pi} \otimes_{j=1}^{t} \rho_{j}).$$
(2)

To evaluate this, note that

$$\operatorname{tr}\left((X \otimes Y) \sum_{ab} |b, a\rangle\langle a, b|\right) = \sum_{ab} \langle a|X|b\rangle\langle b|Y|a\rangle = \operatorname{tr}(XY) \tag{3}$$

$$\operatorname{tr}\left((X \otimes Y \otimes Z) \sum_{abc} |b, c, a\rangle\langle a, b, c|\right) = \sum_{abc} \langle a|X|b\rangle\langle b|Y|c\rangle\langle c|Z|a\rangle = \operatorname{tr}(XYZ). \tag{4}$$

On the one hand,

$$P(\text{agree}|\rho_1, \rho_2) = \frac{1}{d+1} \left(\frac{d}{n}\right) \left[\text{tr}(\rho_1) \text{tr}(\rho_2) + \text{tr}(\rho_1 \rho_2) \right] \le \left(\frac{d}{n}\right) \frac{2}{d+1}, \quad (5)$$

which is maximized when $\rho_1 = \rho_2 = \rho$ pure. On the other hand,

$$P(\text{agree}|\rho_{1}, \rho_{2}, \rho_{3}) = \frac{1}{(d+1)(d+2)} \left(\frac{d}{n}\right)^{2} \left[\text{tr}(\rho_{1}) \text{tr}(\rho_{2}) \text{tr}(\rho_{3}) + \text{tr}(\rho_{1}) \text{tr}(\rho_{2}\rho_{3}) + \text{tr}(\rho_{1}) \text{tr}(\rho_{1}\rho_{2}\rho_{3}) + \text{tr}(\rho_{1}\rho_{1}\rho_{2}\rho_{3}) + \text{tr}(\rho_{1}\rho_{2}\rho_{3}) + \text{tr}(\rho_{1}\rho_{2}\rho_{3}) + \text{tr}(\rho_{1}\rho_{2}\rho_{3}) + \text{tr}(\rho_{1}\rho_{2}\rho_{3}) \right]$$

$$\leq \left(\frac{d}{n}\right)^{2} \frac{6}{(d+1)(d+2)},$$

which again is maximized when $\rho_1 = \rho_2 = \rho_3 = \rho$ pure. Consider the following lemma:

Lemma 1. A quantum state ρ is pure if and only if $tr(\rho^2) = tr(\rho^3) = 1$.

Proof. Let $\{\lambda_i\}$ be the eigenvalues of ρ . $\operatorname{tr}(\rho^2) = \operatorname{tr}(\rho^3) = 1$ means that $\sum_i \lambda_i^2 = \sum_i \lambda^3 = 1$. On the one hand, $\sum_i \lambda_i^2 = 1$ implies that $\forall i : -1 \le \lambda_i \le 1$. On the other hand, $\sum_i \lambda_i^3 \le \sum_i \lambda_i^2$ with equality if and only if $\forall i : \lambda_i \in \{0, 1\}$. But since the whole sum must be 1, we must have exactly one $\lambda_i = 1$ and the rest 0. Thus ρ is a rank-1 projector, and hence a pure state.

We conclude that we can characterize pure-states by the following equations

$$\forall i: P(E_i|\rho) \ge 0 \tag{7}$$

$$\sum_{i} P(E_i|\rho) = 1 \tag{8}$$

$$\sum_{i} P(E_i|\rho)^2 = \left(\frac{d}{n}\right) \frac{2}{d+1} \tag{9}$$

$$\sum_{i} P(E_i|\rho)^3 = \left(\frac{d}{n}\right)^2 \frac{6}{(d+1)(d+2)},\tag{10}$$

with the caveat that $P(E|\rho) \in \operatorname{col}(P)$, where $P_{ij} = P(E_i|\sigma_j) = \operatorname{tr}(E_i\sigma_j)$. Why this last condition? The reason is that a 3-design representation is necessarily overcomplete—indeed, $n \geq \frac{1}{2}d^2(d+1)$ — and in our derivation, we've assumed that all probabilities $P(E_i|\rho)$ are obtained from $\operatorname{tr}(E_i\rho)$. Let \mathbf{E} be the matrix whose rows are $(E_i|$ and \mathbf{S} be the matrix whose columns are $|\sigma_i|$ where $|X| = (X \otimes I) \sum_i |i,i\rangle = \operatorname{vec}(X)$. On the one hand, $P(E|\rho) = \mathbf{E}|\rho)$; on the other hand, $P(E|\rho) = \mathbf{E}|\rho$, which is a full-rank factorization and thus the columns of \mathbf{E} form a basis for the column-space of P. Therefore our proof becomes if-and-only if as long as $P(E|\rho) \in \operatorname{col}(P)$.

It is worth noting that we can motivate the restriction that $P(E|\rho) \in \operatorname{col}(P)$ on QBist grounds. Let the Born matrix Φ be any matrix satisfying $P\Phi P = P \iff \mathbf{S}\Phi \mathbf{E} = I$. Then the Born rule appears as

$$P(A_i|\rho) = \operatorname{tr}(A_i\rho) = (A_i|\mathbf{S}\Phi\mathbf{E}|\rho) = \sum_{jk} P(A_i|\sigma_j)\Phi_{jk}P(E_k|\rho), \quad (11)$$

a deformation of the law of total probability. In particular, $P(E_i|\rho) = \sum_{jk} P(E_i|\sigma_j) \Phi_{jk} P(E_k|\rho)$. Thus for consistency's stake, we ought to require $P(E|\rho) = P\Phi P(E|\rho)$. $P\Phi P = P$ implies that $P\Phi$ is a projector. On what subspace, though? For a 2-design $\frac{1}{n} \sum_i \sigma_i^{\otimes 2} = \frac{1}{d(d+1)} (I \otimes I + \mathcal{S})$ so that

$$\frac{1}{n}\sum_{i}\sigma_{i}\otimes\sigma_{i}^{T}=\frac{1}{d(d+1)}\left(I\otimes I+|I)(I|\right).$$
(12)

For a pure state σ , $|\sigma\rangle(\sigma| = \sigma \otimes \sigma^T$, and so letting $E_i = \frac{d}{n}\sigma_i$, we arrive at the resolution of the identity $I = (d+1)\sum_i |\sigma_i\rangle(E_i| - |I\rangle(I|)$, which demonstrates informational-completeness. Comparing this to $\mathbf{S}\Phi\mathbf{E} = I = \sum_{ij} \Phi_{ij}|\sigma_i\rangle(E_j|)$, it follows that we may take $\Phi = (d+1)I - \frac{d}{n}J$. Since Φ is full rank, $P\Phi$ projects onto $\mathrm{col}(P)$.

So the contour of quantum state-space according to a 3-design is given by the intersection of the non-negative orthant, a 1-norm sphere, a 2-norm sphere, and a 3-norm sphere of prescribed radii, and a d^2 dimensional subspace: $\operatorname{col}(P)$. Alternatively, we can derive a single equation picking out pure probability-assignments from the demand that $\rho = \rho^2$. From the resolution of the identity, $\rho = \sum_{ij} \Phi_{ij} P(E_j | \rho) \sigma_i$, we have

$$P(E_i|\rho) = \sum_{km} P(E_k|\rho) P(E_m|\rho) \sum_{jm} \Phi_{jk} \Phi_{lm} \Re \left[\operatorname{tr}(E_i \sigma_j \sigma_l) \right], \tag{13}$$

where the real-part comes from $\operatorname{tr}(E_i\sigma_j\sigma_l) + \operatorname{tr}(E_i\sigma_l\sigma_j) = \operatorname{tr}(E_i\sigma_j\sigma_l) + \operatorname{tr}(E_i\sigma_j\sigma_l)^* = 2\Re[\operatorname{tr}(E_i\sigma_j\sigma_l)].$ Let $\mathcal{M}_3 = \frac{1}{n}\sum_i \sigma_i^{\otimes 3}$ so that

$$P(E_i, E_j, E_k | \mathcal{M}_3) = \frac{1}{n} \sum_m P(E_i | \sigma_m) P(E_j | \sigma_m) P(E_k | \sigma_m)$$

$$= \frac{1}{(d+1)(d+2)} \left(\frac{d}{n^2} \right) \left[\frac{d}{n} + P(E_j | \sigma_k) + P(E_i | \sigma_j) + P(E_i | \sigma_k) + 2\Re\left[\operatorname{tr}(E_i \sigma_j \sigma_k) \right] \right],$$
(14)

and therefore

$$\Re\left[\operatorname{tr}(E_{i}\sigma_{j}\sigma_{k})\right] \tag{15}$$

$$= \frac{1}{2} \left[(d+1)(d+2)\left(\frac{n}{d}\right) \sum_{m} P(E_{i}|\sigma_{m})P(E_{j}|\sigma_{m})P(E_{k}|\sigma_{m}) - P(E_{j}|\sigma_{k}) - P(E_{i}|\sigma_{j}) - P(E_{i}|\sigma_{k}) - \frac{d}{n} \right].$$

Our condition for pure-statehood then simplifies to

$$P(E_i|\rho) = \frac{1}{2} \left[\frac{1}{2} (d+1)(d+2) \left(\frac{n}{d} \right) \sum_m P(E_i|\sigma_m) P(E_m|\rho)^2 - \frac{d}{n} \right],$$
 (16)

which we note automatically implies $P(E|\rho) \in col(P)$.

In fact, we can do even better, and derive a condition for the validity of any state, pure or mixed. We note that $\Re[\operatorname{tr}(E_i\sigma_j\sigma_k)]$ are essentially the structure-coefficients for the Jordan product $A \circ B = \frac{1}{2}(AB + BA)$,

$$\operatorname{tr}(E_{i}A \circ B) = \frac{1}{2} \left(\operatorname{tr}(E_{i}AB) + \operatorname{tr}(E_{i}BA) \right) = \sum_{km} \operatorname{tr}(E_{k}A) \operatorname{tr}(E_{m}B) \sum_{jl} \Phi_{jk} \Phi_{lm} \Re \left[\operatorname{tr}(E_{i}\sigma_{j}\sigma_{l}) \right].$$

$$(17)$$

The linear operator $L[\rho]$ which performs the Jordan product (and which acts on vectorized states) is $L[\rho] = \frac{1}{2}(\rho \otimes I + I \otimes \rho^T)$. The matrix

$$\mathcal{L}[\rho]_{ij} = \operatorname{tr}(E_i L[\rho](\sigma_j)) = \frac{d}{n} (\sigma_i | L[\rho] | \sigma_j)$$
(18)

$$= \sum_{kl} \Re[\operatorname{tr}(E_i \sigma_j \sigma_k)] \Phi_{kl} P(E_l | \rho)$$
(19)

does the same on e.g. probability vectors:

$$\tilde{P}(E|\rho \circ \tau) = \mathbf{E}L[\rho]|\tau) = \mathbf{E}L[\rho]\mathbf{S}\Phi\mathbf{E}|\tau) = \mathcal{L}[\rho]\Phi P(E|\tau), \tag{20}$$

where the tilde recalls that $\tilde{P}(E|\rho \circ \tau)$ might not be a normalized probability distribution. Note that $\mathcal{L}[\rho]$ does not depend on any redundancy in $P(E|\rho)$. We find after substitution that

$$\mathcal{L}[\rho]_{ij} = \frac{1}{2} \left[(d+1)(d+2) \left(\frac{n}{d} \right) \sum_{m} P(E_m | \sigma_i) P(E_m | \sigma_j) P(E_m | \rho) - P(E_i | \sigma_j) - P(E_i | \rho) - P(E_j | \rho) - \frac{d}{n} \right]. \tag{21}$$

Now clearly, $\rho \geq 0 \Longleftrightarrow L[\rho] \geq 0$. Moreover, $L[\rho] \geq 0 \Longleftrightarrow \mathcal{L}[\rho] \geq 0$. To see this note that if $\{|f_i\rangle\}$ is a frame with dual elements $\{(\tilde{f}_i|\}\}$ such that $\sum_i |f_i\rangle(\tilde{f}_i| = \sum_i |\tilde{f}_i\rangle(f_i| = I)$, we can write an arbitrary operator $A = \sum_{ij} (f_i|A|f_j) |\tilde{f}_i\rangle(\tilde{f}_j|$, where, considering the matrix of coefficients $A_{ij}^f = (f_i|A|f_j)$, $A^f \geq 0$ iff $A \geq 0$, since $\sum_{ij} x_i^* (f_i|A|f_j) x_j = y^\dagger Ay \geq 0$. We thus have a condition for statehood, pure or mixed: $\mathcal{L}[\rho] \geq 0$, which again only depends on reference device probabilities

Finally, let us give an interpretation of this last result. Consider that if $X = \sum_{i} x_i E_i$ is some arbitrary observable, it follows that

$$\forall X : \operatorname{tr}(X^{2}\rho) = \left(\frac{d}{n}\right) \sum_{ijkl} x_{i} x_{j} \Re[\operatorname{tr}(E_{i}\sigma_{j}\sigma_{k})] \Phi_{kl} P(E_{l}|\rho) \ge 0 \iff \rho \ge 0, \quad (22)$$

which is immediately equivalent to $\mathcal{L}[\rho] \geq 0$. Again substituting in $\Re[\operatorname{tr}(E_i\sigma_j\sigma_k)]$ yields a condition on valid $P(E|\rho)$

$$\forall \{x_i\} : \sum_{i} \left(\sum_{j} P(E_i | \sigma_j) x_j \right)^2 P(E_i | \rho) \ge \frac{d}{(d+1)(d+2)} \left[\frac{1}{n} \sum_{ij} x_i P(E_i | \sigma_j) x_j + 2\langle X | \mu \rangle \langle X | \rho \rangle + d\langle X | \mu \rangle^2 \right], \tag{23}$$

where e.g. $\langle X|\rho\rangle = \sum_i x_i P(E_i|\rho)$, and $\forall i: P(E_i|\mu) = \frac{1}{n}$. If we make the simplifying assumption that $x \in \operatorname{col}(P)$, using the 2-design property, this simplifies to

$$\forall \{x_i\} \in \operatorname{col}(P) : \sum_{i} x_i^2 P(E_i|\rho) \ge \frac{d}{d+2} \Big(\langle X^2|\mu \rangle - 2\langle X|\mu \rangle \langle X|\rho \rangle \Big), \tag{24}$$

where e.g. $\langle X^2 | \mu \rangle = \frac{1}{n} \sum_i x_i^2$. Notice that we are considering the second-moment with respect to the reference device as opposed to a von Neumann measurement (although the inequality is saturated iff $\operatorname{tr}(X^2 \rho) = 0$). Thus the shape of quantum state-space can be understood in terms of a kind of uncertainty principle: a valid probability-assignment to the reference device implies a certain minimum variance to any observable in $\operatorname{col}(P)$.

2 Reversion

We begin in a formless void without yet quantum mechanics.

Assumption 1: There is a reference device characterized by a stochastic matrix $P_{ij} = P(E_i|\sigma_j)$ where P is symmetric and hence bistochastic.

Assumption 2: We assume that $\Phi = \alpha I + \beta J$ is a Born matrix for P, satisfying $P\Phi P = P$, and that $Q(E|\rho) = \Phi P(E|\rho)$ are quasi-probabilities, possibly negative, summing to 1. Here J is the matrix of all 1's.

On the one hand, since $\sum_{ij} \Phi_{ij} P(E_j | \rho) = 1$, we must have $\alpha + n\beta = 1$ so that $\beta = (1 - \alpha) \left(\frac{1}{n}\right)$. On the other hand,

$$P\Phi P = \alpha P^2 + \beta J = P. \tag{25}$$

Noting that JPx = Jx, we have $\alpha P(Px) + \beta J(Px) = Px$. Letting $y = Px \in \text{col}(P)$ and $u = (1, ..., 1)^T$, we have

$$\alpha Py + \beta \left(\sum_{i} y_{i}\right) u = y \Longrightarrow Py = \frac{1}{\alpha} \left[y - \beta \left(\sum_{i} y_{i}\right) u\right].$$
 (26)

In particular, for probabilities $P(E|\rho) \in \operatorname{col}(P)$,

$$\sum_{j} P(E_i|\sigma_j)P(E_j|\rho) = \frac{1}{\alpha}P(E_i|\rho) + \left(1 - \frac{1}{\alpha}\right)\frac{1}{n}:$$
 (27)

in other words, for probability-assignments in its column space, P acts as a depolarizing channel. We note that $P\Phi$ projects onto col(P).

Assumption 3: A probability-assignment $P(E|\rho)$ is valid if and only if for any observable $x \in \operatorname{col}(P)$, the second-moment with respect to the reference device satisfies a lower bound. Further we assume that like the second-moment itself, the lower bound is linear in $P(E|\rho)$ and quadratic in x.

We can characterize the lower bound in terms of a three-index tensor A_{ijk} such that a valid $P(E|\rho)$ satisfies

$$\forall \{x_i\} \in \operatorname{col}(P) : \sum_{i} x_i^2 P(E_i|\rho) \ge \sum_{ijk} A_{ijk} x_i x_j P(E_k|\rho), \tag{28}$$

or

$$\forall \{x_i\} \in \operatorname{col}(P) : \sum_{ij} x_i \left[\sum_k \left(\delta_{ij} \delta_{ik} - A_{ijk} \right) P(E_k | \rho) \right] x_j \ge 0.$$
 (29)

Let $B[\rho]_{ij} = \sum_k \left(\delta_{ij} \delta_{ik} - A_{ijk} \right) P(E_k | \rho)$. Since $B[\rho] \ge 0$ on col(P), and $P\Phi = (P\Phi)^T$ projects onto that subspace, we have

$$C[\rho] = P\Phi B[\rho]P\Phi \ge 0 \tag{30}$$

simplicter iff $P(E|\rho)$ is a valid state. Indeed, if we choose A_{ijk} to be symmetric in the first two indices, then $C[\rho]$ will be postive semi-definite. We've thus managed to translate the validity of $P(E|\rho)$, expressed in terms of a lower bound on the second-moment of any observable with respect to the reference device, into the postive-semidefiniteness of a certain matrix associated to $P(E|\rho)$.

Assumption 4: We assume that $A_{ijk} = \eta \left(\delta_{ij} - \delta_{ik} - \delta_{jk} \right)$. Substituting this simple form for A_{ijk} into the expression for $C[\rho]$ yields

$$C[\rho]_{ij} = \alpha^2 \sum_{k} P(E_k | \sigma_i) P(E_k | \sigma_j) P(E_k | \rho) - \alpha \eta P(E_i | \sigma_j) + \kappa P(E_i | \rho) + \kappa P(E_j | \rho) - \beta \kappa,$$
(31)

where $\kappa = \beta + \eta$.

Now let
$$\alpha = (d+1)$$
, $\beta = -\frac{d}{n}$, $\eta = \frac{1}{d+2} \left(\frac{d}{n}\right)$, and $\chi = \frac{1}{2} \left(\frac{n}{d}\right) \left(\frac{d+2}{d+1}\right)$. Then

$$\mathcal{L}[\rho]_{ij} = \chi C[\rho]_{ij}$$

$$= \frac{1}{2} \left\{ (d+1)(d+2) \left(\frac{n}{d} \right) \sum_{k} P(E_k | \sigma_i) P(E_k | \sigma_j) P(E_k | \rho) - P(E_i | \sigma_l) - P(E_i | \rho) - P(E_j | \rho) - \frac{d}{n} \right\},$$
(32)

is precisely the matrix we derived earlier, which represents taking the Jordan product with ρ . In other words, if $P(E_i|\sigma_j)$ in fact characterizes a quantum 3-design, then $\mathcal{L}[\rho]_{ij} = \operatorname{tr}\left(E_i\left[\frac{1}{2}(\sigma_j\rho + \rho\sigma_j)\right]\right)$.

Next steps:

• The Jordan product is completely characterized by its commutativity and the condition that $[L[\rho], L[\rho^2] = 0$. For us, this means on the one hand, $\mathcal{L}[\rho]\Phi P(E|\tau) = \mathcal{L}[\tau]\Phi P(E|\rho)$, and on the other hand, $[\mathcal{L}[\rho]\Phi, \mathcal{L}[\rho^2]\Phi] = 0$. (Moreover, a Euclidean Jordan algebra satisfies $\forall A, B, C \in \mathcal{V} : \langle L[A]B, C \rangle = 0$

 $\langle B, L[A]C\rangle$ for a choice of inner product on the underlying vector space $\mathcal{V}.)$ Does any

$$\mathcal{L}[\rho]_{ij} = \chi \left\{ \alpha^2 \sum_{k} P(E_k | \sigma_i) P(E_k | \sigma_j) P(E_k | \rho) - \alpha \eta P(E_i | \sigma_j) + \kappa P(E_i | \rho) + \kappa P(E_j | \rho) - \beta \kappa \right\}$$
(33)

for arbitrary symmetric, stochastic, depolarizing $P(E|\sigma)$, given the appropriate choices of constants, satisfy the Jordan product conditions? In other words, have we found an alternative way of characterizing (some subset of) the Euclidean Jordan algebras? A great deal of tedious algebra lies in between resolving this yes or no. Suppose the answer is yes. Recall that all EJA's are direct sums of the simple EJA's: $\operatorname{Sym}(d,\mathbb{R})$, $\operatorname{Herm}(d,\mathbb{C})$, $\operatorname{Herm}(d,\mathbb{H})$, $\operatorname{Herm}(3,\mathbb{O})$, and $\mathbb{R} \times \mathbb{R}^{d-1}$. Then the choice of quantum theory over \mathbb{C} is likely no simpler than the condition that $P(E_i|\sigma_j)$ can be represented as $\operatorname{tr}(E_i\sigma_j)$ for a 3-design $\{\sigma_i\}$ in \mathcal{H}_d . On the other hand, suppose the answer is no. Then the two defining conditions on the Jordan product translate into restrictions on the probabilities $P(E_i|\sigma_j)$. This could pick out a whole class of EJA's. Or if we're unreasonably lucky, it might pick out quantum theory over \mathbb{C} specifically, and thus providing a characterization of 3-designs themselves entirely in terms of reference device probabilities $P(E_i|\sigma_j)$.

• Suppose instead we want to derive the Jordan structure. Answering the aforementioned question will likely suggest the best way of doing that. But we can already ask, for example: given some A_{ijk} alone (taking the simple form or not), a) can we characterize the extremal probability distributions? b) can we characterize its dual (the space of non-negative linear functionals of the form P(η|σ)Φ)? Must such a state space be self-dual? Can we then show that iff P(E|ρ) is extreme χC[ρ]ΦP(E|ρ) = P(E|ρ), for instance?