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1 Procession

A (complex-projective, unbiased) ¢-design is a set of pure quantum states {o; }7"_;
which satisfy
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1-designs, rescaled, form measurements. 2-designs include SICs and MUBs.
3-designs will concern us here. Let us consider a measure-and-prepare device
which performs measurement {E; = %O’i} and conditionally prepares a state
{0;} where the states {o;} form an 3-design. Note that a t-design is also a
(t — 1)-design, so that indeed, {F;} is a measurement. Moreover, from the fact
that the device forms a 2-design, it is informationally-complete: the probabilities
P(E;|p) = tr(E;p) suffice to pick out a density matrix. But crucially, not
all probability distributions correspond to valid states (they map to matrices
with negative eigenvalues). So how can we characterize the valid probability-
assignments to the reference device? Here the 3-design property comes into
play.
Consider the agreement-probabilities for ¢ devices
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To evaluate this, note that

<(X®Y > [b,a) a,b|> > (alX[b)(b]Y]a) = tr(XY) (3)
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((X@Y@ Z) Z|b ¢,a){a,b, c|> (a| X |bY(b|Y |c){c|Z|a) = tr(XY Z).
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On the one hand,

1

P(agreelpr, p2) = 7 (Z) {tr(m)tr(pz) +tr(p1pz)} < (d> 2 (5)



which is maximized when p; = pa = p pure. On the other hand,

(Z> [tr(Pl)tr(m)tr(P:a) +tr(p)tr(pzps)
(6)
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which again is maximized when p; = ps = p3 = p pure. Consider the following
lemma:

Lemma 1. A quantum state p is pure if and only if tr(p?) = tr(p®) = 1.

Proof. Let {)\;} be the eigenvalues of p. tr(p?) = tr(p®) = 1 means that >, \? =
>, A% = 1. On the one hand, ), \? = 1 implies that Vi : =1 < \; < 1. On
the other hand, >, A < >, A? with equality if and only if Vi : A; € {0,1}. But
since the whole sum must be 1, we must have exactly one A\; = 1 and the rest
0. Thus p is a rank-1 projector, and hence a pure state. O

We conclude that we can characterize pure-states by the following equations
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with the caveat that P(E|p) € col(P), where P;; = P(E;|0;) = tr(E;0;). Why
this last condition? The reason is that a 3-design representation is necessarily
overcomplete—indeed, n > %dz (d + 1)— and in our derivation, we’ve assumed
that all probabilities P(FE;|p) are obtained from tr(E;p). Let E be the matrix
whose rows are (E;| and S be the matrix whose columns are |o;) where |X) =
(X®I)>, |i,i) = vec(X). On the one hand, P(E|p) = E|p); on the other hand,
P = ES, which is a full-rank factorization and thus the columns of E form a
basis for the column-space of P. Therefore our proof becomes if-and-only if as
long as P(E|p) € col(P).

It is worth noting that we can motivate the restriction that P(E|p) € col(P)
on QBist grounds. Let the Born matrix ® be any matrix satisfying POP =
P <= S®E = I. Then the Born rule appears as

P(A,lp) = tr(Aip) = (A,|STEIp) = S P(Alo) 8, P(Eilp), (1)
ik



a deformation of the law of total probability. In particular, P(E;|p) = ;. P(Es|0;)® kP (Ek|p).
Thus for consistency’s stake, we ought to require P(E|p) = P®P(E|p). POP =

P 1mp11eb that P<I> is a projector. On what subspace, though? For a 2-design
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For a pure state o, |0)(0] = 0 ® o1, and so letting F; = al, we arrive at the
resolution of the identity I = (d + )Z lo) (E;| — |T)(I], "which demonstrates
informational-completeness. Comparing this to SCE = I = . ®;;|0;)(E;], it
follows that we may take ® = (d + 1)1 — ZJ Since @ is full rank P® projects
onto col(P).

So the contour of quantum state-space according to a 3-design is given by
the intersection of the non-negative orthant, a 1-norm sphere, a 2-norm sphere,
and a 3-norm sphere of prescribed radii, and a d? dimensional subspace: col(P).
Alternatively, we can derive a single equation picking out pure probability-
assignments from the demand that p = p?. From the resolution of the identity,
p=>; ijP(Ej|p)oi, we have

P(Eilp) = ZP Ey|p)P(Emlp) Y @5 ®imR[tr(Eioj01)], (13)
jm
where the real-part comes from tr(E;o;0;)+tr(E;0,05) = tr(E;050,)+tr(Eioj0)* =
2R[tr(E;0j07)]. Let M5 = 13" 0%% so that
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R[tr(Eiojor)] (15)

% + P(Ejlok) + P(Ej|o;) + P(Ei|ok) + 2%[tr(EinUk)]] ;

and therefore

:% (d+1)(d +2) ( )ZPEW”L (E;lom)P (Ekam)—P(Ej|ak)—P(Eioj)—P(EAo—k)—Z].

Our condition for pure-statehood then simplifies to

P(Elp) = 3 |5+ 1 +2) (5 )ZPE|om (Balo? - 2|, (16)
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which we note automatically implies P(E|p) € col(P).



In fact, we can do even better, and derive a condition for the validity of any
state, pure or mixed. We note that %[tr(Eiajak)] are essentially the structure-
coefficients for the Jordan product Ao B = {(AB + BA),

tr(E;Ao B) = %(tr(EiAB) +tr(E;BA)) =Y tr(EpA)tr(EnB) Y 058 R[tr(Eiojo)].
km gl
(17)

The linear operator L[p] which performs the Jordan product (and which acts
on vectorized states) is L[p] = 1(p® I + I ® pT). The matrix

Llplis = w(BLIpl(o)) = “ (@il Llpllory) 18)
= > Rltr(Eiojor)| @ P(Eilp) (19)
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does the same on e.g. probability vectors:
P(E|po) = EL[p]|r) = EL[p]S®E|r) = L[p]®P(E|7), (20)

where the tilde recalls that P(E|p o 7) might not be a normalized probability
distribution. Note that L[p] does not depend on any redundancy in P(E|p).
We find after substitution that
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Now clearly, p > 0 <= L[p] > 0. Moreover, L[p] > 0 <= L[p] > 0. To see this
note that if {|f;)} is a frame with dual elements {(f;|} such that Y . |f:)(fi| =
> 1fi)(fil = I, we can write an arbitrary operator A = >, (filAlf;) [fi)(f;l,
where, considering the matrix of coefficients Azfj = (filAlfj), AT >0iff A>0,
since . @7 (filAlfj)z; = y' Ay > 0. We thus have a condition for statehood,
pure or mixed: L[p] > 0, which again only depends on reference device proba-
bilities.

Finally, let us give an interpretation of this last result. Consider that if
X =3, x;E; is some arbitrary observable, it follows that

VX :tr(X2p) = <Z> ZxiijR[tr(Eiojok)]qlklP(El|p) >0<=p>0, (22)
ijkl

which is immediately equivalent to L[p] > 0. Again substituting in R[tr(E;o;0)]
yields a condition on valid P(E|p)
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where e.g. (X|p) = >, z;P(Ei|p), and Vi : P(E;|u) = . If we make the sim-
plifying assumption that = € col(P), using the 2-design property, this simplifies
to

> 0 (%) - 20Xxla)), 29)

V{a;} € col(P) : Y a7 P(E;|p)
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where e.g. (X%[u) = L3, 2?. Notice that we are considering the second-
moment with respect to the reference device as opposed to a von Neumann
measurement (although the inequality is saturated iff tr(X?p) = 0). Thus the
shape of quantum state-space can be understood in terms of a kind of uncer-
tainty principle: a valid probability-assignment to the reference device implies
a certain minimum variance to any observable in col(P).

2 Reversion

We begin in a formless void without yet quantum mechanics.

Assumption 1: There is a reference device characterized by a stochastic
matrix P;; = P(E;|o;) where P is symmetric and hence bistochastic.

Assumption 2: We assume that ® = ol + 8J is a Born matrix for P, sat-
isfying P®P = P, and that Q(F|p) = ®P(FE|p) are quasi-probabilities, possibly
negative, summing to 1. Here J is the matrix of all 1’s.

On the one hand, since 3, ®;; P(Ej|p) = 1, we must have a +nf = 1 so
that 3= (1 —a) (2). On the other hand,

POP = aP? 4+ 3J = P. (25)

Noting that JPx = Jx, we have aP(Px) + 8J(Pz) = Px. Letting y = Pz €
col(P) and u = (1,...,1)T, we have

aPy+B<Zyi>u=yﬁPy=;ly—ﬁ<2yi>u]. (26)

In particular, for probabilities P(E|p) € col(P),
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S Pl PE ) = LP(El) + (1- 1) 1 (27)

in other words, for probability-assignments in its column space, P acts as a
depolarizing channel. We note that P® projects onto col(P).

Assumption 3: A probability-assignment P(E|p) is valid if and only if for
any observable x € col(P), the second-moment with respect to the reference
device satisfies a lower bound. Further we assume that like the second-moment
itself, the lower bound is linear in P(E|p) and quadratic in z.



We can characterize the lower bound in terms of a three-index tensor A;jj
such that a valid P(E|p) satisfies

v{x;} € col(P Zx P(FE;|p) > ZA”k:Z? xjP(Eg|p), (28)

ijk

or

V{x;} € col(P) : sz

j

z; > 0. (29)
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Let Blplij = > s (5”—5% — Aijk)P(Ek|p). Since B[p] > 0 on col(P), and PP =
(P®)T projects onto that subspace, we have

C[p] = P®B[p|P® > 0 (30)

simplicter iff P(E|p) is a valid state. Indeed, if we choose A;j; to be symmetric in
the first two indices, then C[p] will be postive semi-definite. We’ve thus managed
to translate the validity of P(F|p), expressed in terms of a lower bound on the
second-moment of any observable with respect to the reference device, into the
postive-semidefiniteness of a certain matrix associated to P(E|p).
Assumption 4: We assume that A;;;, = 77<57;j — i, — Ojk )
Substituting this simple form for A;;; into the expression for C|p] yields

Clolij = @® Y P(Ek|o) P(Ex|o)P(Ek|p) — anP(Ei|o;) + £P(Eilp) + £P(E;|p) —
k

(31)
where k = 8+ 7.
Now let a = (d+ 1), 8 = f%, n= d+&-2 (%), and x = % (%) (%). Then
Llplij = xClpli; (32)

= ;{(d-{-l )(d+2) ( )ZP Ey|oi)P(Ex|oj)P(Exlp) — P(Eiloy) — P(E;|p) — P(Ej|p)

is precisely the matrix we derived earlier, which represents taking the Jordan
product with p. In other words, if P(E;|o;) in fact characterizes a quantum
3-design, then L[p];; = tr (E; [$(0jp + poj)]).

Next steps:

e The Jordan product is completely characterized by its commutativity and
the condition that [L[p], L[p*] = 0. For us, this means on the one hand,
L[p|®P(E|r) = L[r]®P(E|p), and on the other hand, [L[p]®, L[p?]®] = 0.
(Moreover, a Euclidean Jordan algebra satisfies VA, B,C € V : (L[A]B,C) =
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B, L[A]C) for a choice of inner product on the underlying vector space
V.) Does any

Llpli; = X{OéQ > P(Eyloi) P(Ex|0;) P(Exlp) — anP(E;|o;) + kP(E;|p) + kP(Ej|p) - ﬁm}
k
(33)

for arbitrary symmetric, stochastic, depolarizing P(F|o), given the ap-
propriate choices of constants, satisfy the Jordan product conditions? In
other words, have we found an alternative way of characterizing (some
subset of) the Euclidean Jordan algebras? A great deal of tedious algebra
lies in between resolving this yes or no. Suppose the answer is yes. Recall
that all EJA’s are direct sums of the simple EJA’s: Sym(d, R), Herm(d, C),
Herm(d, H), Herm(3,Q), and R x R?~!. Then the choice of quantum the-
ory over C is likely no simpler than the condition that P(E;|o;) can be
represented as tr(F;o;) for a 3-design {o;} in Hy. On the other hand,
suppose the answer is no. Then the two defining conditions on the Jor-
dan product translate into restrictions on the probabilities P(FE;|o;). This
could pick out a whole class of EJA’s. Or if we’re unreasonably lucky, it
might pick out quantum theory over C specifically, and thus providing
a characterization of 3-designs themselves entirely in terms of reference
device probabilities P(E;|o;).

Suppose instead we want to derive the Jordan structure. Answering the
aforementioned question will likely suggest the best way of doing that. But
we can already ask, for example: given some A, alone (taking the simple
form or not), a) can we characterize the extremal probability distributions?
b) can we characterize its dual (the space of non-negative linear functionals
of the form P(n|o)®)? Must such a state space be self-dual? Can we then
show that iff P(E|p) is extreme xC[p]|PP(E|p) = P(E|p), for instance?
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