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• An observation is defined as:

y = h(x) + w

where x ∈ Rn and y ∈ Rm denote the unknown vector and the measurement
vector. h : Rn → Rm is a function of x and w is the observation noise with
the power density fw(w).

• It is assumed that x is a random variable with an a priori power density
fx(x) before the observation.

• The goal is to compute the “best” estimation of x using the observation.

Optimal Estimation
• The optimal estimation x̂ is defined based on a cost function J :

x̂opt = arg min
x̂

E[J(x − x̂)]

• Some typical cost functions:
– Minimum Mean Square Error (x̂MMSE):

J(x − x̂) = (x − x̂)TW (x − x̂), W > 0

– Absolute Value (x̂ABS):

J(x − x̂) = |x − x̂|

– Maximum a Posteriori (x̂MAP ):

J(x − x̂) =
{

0 if |x − x̂| ≤ ϵ

1 if |x − x̂| > ϵ
, ϵ → 0

• It can be shown that:
x̂MMSE(y) = E[x|y]∫ x̂ABS(y)

−∞
fx|y(x|y) dx =

∫ +∞

x̂ABS(y)
fx|y(x|y) dx

x̂MAP = arg max
x

fx|y(x|y)

• If the a posteriori density function fx|y(x|y) has only one maximum and it
is symmetric with respect to E[x|y] then all the above estimates are equal
to E[x|y].
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• In fact, assuming these conditions for fx|y(x|y), E(x|y) is the optimal
estimation for any cost function J if J(0) = 0 and J(x− x̂) is nondecreasing
with distance (Sherman’s Theorem).

• Maximum Likelihood Estimation: x̂ML is the value of x that maxi-
mizes the probability of observing y:

x̂ML(y) = arg max
x

fy|x(y|x)

• It can be shown that x̂ML = x̂MAP if there is no a priori information
about x.

Linear Gaussian Observation
• Consider the following observation: y = Ax + Bw where w ∼ N (0, Ir) is a

Gaussian random vector and matrices Am×n and Bm×r are known.

• In this observation, x is estimable if A has full column rank otherwise there
will be infinite solutions for the problem.

• If BBT is invertible, then:

fy|x(y|x) = 1
(2π)n/2|BBT|1/2

× exp
(

−1
2

[
(y − Ax)T(BBT)−1(y − Ax)

])

• The maximum likelihood estimation can be computed as:

x̂ML = arg min
x

(y − Ax)T(BBT)−1(y − Ax)

= (AT(BBT)−1A)−1AT(BBT)−1y

• It is very interesting that x̂ML is the Weighted Least Square (WLS) solution
to the following equation: y = Ax with the weight matrix W = BBT i.e.

x̂W LS = arg min
x

(y − Ax)TW (y − Ax)

• x̂ML is an unbiased estimation:

b(x) = E[x − x̂ML|x]
= E

[
(AT(BBT)−1A)−1AT(BBT)−1y − x | x

]
= 0
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• The covariance of the estimation error is:

Pe(X) = E[(x − x̂ML)(x − x̂ML)T|x] = (AT(BBT)−1A)−1

• x̂ML is efficient in the sense of Cramér Rao bound.

• Example: Consider the following linear Gaussian observation: y = ax + w
where a is a nonzero real number and w ∼ N (0, r) is the observation noise.

• Maximum a Posteriori Estimation: To compute x̂MAP , it is assumed
that the a priori density of x is Gaussian with mean mx and variance px:

x ∼ N (mx, px)

• The conditions of Sherman’s Theorem is satisfied and therefore:

x̂MAP = E[x|y]

= mx + pxy

py
(y − my)

= mx + apx

a2px + r
(y − amx)

= apxy + mxr

a2px + r

• Estimation bias:

bMAP = E[x− x̂MAP ] = mx − apxe[y] + rmx

a2px + r
= mx − a2pxmx + rmx

a2px + r
= 0

• Estimation error covariance:

pMAP = E[(x − x̂MAP )2] = px − a2p2
x

a2px + r
= pxr

a2px + r

• Maximum Likelihood Estimation: For this example, we have:

fy|x(y|x) = fw(y − ax) = 1√
2πr

exp
(

− (y − ax)2

2r

)
• With this information:

x̂ML = arg max
x

fy|x(y|x) = y

a

• Estimation bias:

bML = E[x − x̂ML|x] = x − ax

x
= 0
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• Estimation error covariance:

pML = E[(x − x̂ML)2|x] = E

[(
x − ax + w

a

)2
]

= r

a2

• Comparing xMAP and xML, we have:

lim
px→+∞

x̂MAP = x̂ML

It means that if there is no a priori information about x, the two estimations
are equal.

• For the error covariance, we have:

1
pMAP

= 1
pML

+ 1
px

• In other words, information after observation is the sum of information of
the observation and information before the observation.

• Estimation error covariance:

lim
px→+∞

p̂MAP = p̂ML

• It is possible to include a priori information in maximum likelihood esti-
mation.

• A priori distribution of x, N (mx, px), can be rewritten as the following
observation: mx = x + v where v ∼ N (0, px) is the observation noise.

• Combined observation: z = Ax + u where:

z =
[
mx

y

]
, A =

[
1 0
0 a

]
, u =

[
v
w

]
• The assumption is that v and w are independent. Therefore:

u ∼ N
(

0,

[
px 0
0 r

])
• Maximum likelihood estimation:

x̂MLp(z) = arg max
x

fz|x(z|x)

= arg min
x

(
(mx − x)2

px
+ (y − ax)2

r

)
= apxy + mxr

a2px + r
= x̂MAP
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• x̂MLp is unbiased and has the same error covariance as x̂MAP .

• Therefore x̂MLp and x̂MAP are equivalent.

Standard Kalman Filter
• Consider the following linear system:{

x(k + 1) = A(k)x(k) + w(k)
y(k) = C(k)x(k) + v(k)

where x(k) ∈ Rn, y(k) ∈ Rm denote the state vector and measurement
vector at time tk.

• w(k) ∼ N (0, Q(k)) and v(k) ∼ N (0, R(k)) are independent Gaussian white
noise processes where R(k) is invertible.

• It is assumed that there is an a priori estimation of x, denoted by x̂−(k),
which is assumed to be unbiased with a Gaussian estimation error, inde-
pendent of w and v:

e−(k) ∼ N (0, P −(k))

where P −(k) is invertible.

• The Kalman filter is a recursive algorithm to compute the state estimation.

• Output Measurement: Information in x̂−(k) and y(k) can be written
as the following observation:[

x̂−(k)
y(k)

]
=

[
I

C(k)

]
x(k) +

[
e−(k)
v(k)

]
Considering the independence of e−(k) and v(k), we have:[

e−(k)
v(k)

]
∼ N

(
0,

[
P −(k) 0

0 R(k)

])

• Using the Weighted Least Square (WLS) and matrix inversion formula:

(A + BD−1C)−1 = A−1 − A−1B(D + CA−1B)−1CA−1

• Assuming:

K(k) = P −(k)CT(k)[C(k)P −(k)CT(k) + R(k)]−1

• We have:
x̂(k) = x̂−(k) + K(k)(y(k) − C(k)x̂−(k))
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• State estimation is the sum of a priori estimation and a multiplicand of
output prediction error. Since:

ŷ−(k) = C(k)x̂−(k)

• K(k) is the Kalman filter gain.

• Estimation error covariance:

P (k) = (I − K(k)C(k))P −(k)

• Information:
x̂(k) = x(k) + e(k)

where e(k) ∼ N (0, P (k))

• State Update: To complete a recursive algorithm, we need to compute
x̂−(k + 1) and P −(k + 1).

• Information:

x̂(k) = x(k) + e(k)

0 =
[
−I A(k)

] [
x(k + 1)

x(k)

]
+ w(k)

• By removing x(k) from the above observation, we have:

A(k)x̂(k) = x(k + 1) + A(k)e(k) − w(k)

• It is easy to see:
x̂−(k + 1) = A(k)x̂(k)

• Estimation error:
e−(k + 1) = A(k)e(k) − w(k)

• Estimation covariance:

P −(k + 1) = A(k)P (k)AT(k) + Q(k)

Summary:

• Initial Conditions: x̂−(k) and its error covariance P −(k).

• Gain Calculation:

K(k) = P −(k)CT(k)[C(k)P −(k)CT(k) + R(k)]−1
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• x̂(k):

x̂(k) = x̂−(k) + K(k)(y(k) − C(k)x̂−(k))
P (k) = (I − K(k)C(k))P −(k)

• x̂−(k + 1):

x̂−(k + 1) = A(k)x̂(k)
P −(k + 1) = A(k)P (k)AT(k) + Q(k)

• Go to gain calculation and continue the loop for k + 1.

Remarks:

• Estimation residue:
γ(k) = y(k) − C(k)x̂−(k)

• Residue covariance:

Pγ(k) = C(k)P −(k)CT(k) + R(k)

• The residue signal is used for monitoring the performance of Kalman filter.
• Modeling error, round-off error, disturbance, correlation between input and

measurement noise, and other factors might cause a biased and colored
residue.

• The residue signal can be used in Fault Detection and Isolation (FDI).
• The standard Kalman filter is not numerically robust because it contains

matrix inversion. For example, the calculated error covariance matrix
might not be positive definite because of computational errors.

• There are different implementations of Kalman filter to improve the stan-
dard Kalman filter in the following aspects:

– Computational efficiency
– Dealing with disturbance or unknown inputs
– Handling singular systems (difference algebraic equations)
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