Estimation Theory

written by Behzad Samadi on Functor Network original link: https://functor.network/user/1112/entry/569

• An **observation** is defined as:

$$y = h(x) + w$$

where $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$ denote the unknown vector and the measurement vector. $h: \mathbb{R}^n \to \mathbb{R}^m$ is a function of x and w is the observation noise with the power density $f_w(w)$.

- It is assumed that x is a random variable with an a priori power density $f_x(x)$ before the observation.
- The goal is to compute the "best" estimation of x using the observation.

Optimal Estimation

• The optimal estimation \hat{x} is defined based on a cost function J:

$$\hat{x}_{opt} = \operatorname*{arg\,min}_{\hat{x}} E[J(x - \hat{x})]$$

- Some typical cost functions:
 - Minimum Mean Square Error (\hat{x}_{MMSE}):

$$J(x - \hat{x}) = (x - \hat{x})^{\mathrm{T}} W(x - \hat{x}), \quad W > 0$$

- Absolute Value (\hat{x}_{ABS}):

$$J(x - \hat{x}) = |x - \hat{x}|$$

– Maximum a Posteriori (\hat{x}_{MAP}):

$$J(x - \hat{x}) = \begin{cases} 0 & \text{if } |x - \hat{x}| \le \epsilon \\ 1 & \text{if } |x - \hat{x}| > \epsilon \end{cases}, \quad \epsilon \to 0$$

• It can be shown that:

$$\hat{x}_{MMSE}(y) = E[x|y]$$

$$\int_{-\infty}^{\hat{x}_{ABS}(y)} f_{x|y}(x|y) \, dx = \int_{\hat{x}_{ABS}(y)}^{+\infty} f_{x|y}(x|y) \, dx$$

$$\hat{x}_{MAP} = \arg\max_{x} f_{x|y}(x|y)$$

• If the a posteriori density function $f_{x|y}(x|y)$ has only one maximum and it is symmetric with respect to E[x|y] then all the above estimates are equal to E[x|y].

- In fact, assuming these conditions for $f_{x|y}(x|y)$, E(x|y) is the optimal estimation for any cost function J if J(0) = 0 and $J(x-\hat{x})$ is nondecreasing with distance (**Sherman's Theorem**).
- Maximum Likelihood Estimation: \hat{x}_{ML} is the value of x that maximizes the probability of observing y:

$$\hat{x}_{ML}(y) = \arg\max_{x} f_{y|x}(y|x)$$

• It can be shown that $\hat{x}_{ML} = \hat{x}_{MAP}$ if there is no a priori information about x.

Linear Gaussian Observation

- Consider the following observation: y = Ax + Bw where $w \sim \mathcal{N}(0, I_r)$ is a Gaussian random vector and matrices $A_{m \times n}$ and $B_{m \times r}$ are known.
- In this observation, x is estimable if A has full column rank otherwise there will be infinite solutions for the problem.
- If BB^{T} is invertible, then:

$$f_{y|x}(y|x) = \frac{1}{(2\pi)^{n/2}|BB^{T}|^{1/2}} \times \exp\left(-\frac{1}{2}\left[(y - Ax)^{T}(BB^{T})^{-1}(y - Ax)\right]\right)$$

• The maximum likelihood estimation can be computed as:

$$\hat{x}_{ML} = \arg\min_{x} (y - Ax)^{\mathrm{T}} (BB^{\mathrm{T}})^{-1} (y - Ax)$$
$$= (A^{\mathrm{T}} (BB^{\mathrm{T}})^{-1} A)^{-1} A^{\mathrm{T}} (BB^{\mathrm{T}})^{-1} y$$

• It is very interesting that \hat{x}_{ML} is the Weighted Least Square (WLS) solution to the following equation: y = Ax with the weight matrix $W = BB^{T}$ i.e.

$$\hat{x}_{WLS} = \arg\min_{x} (y - Ax)^{\mathrm{T}} W(y - Ax)$$

• \hat{x}_{ML} is an unbiased estimation:

$$b(x) = E[x - \hat{x}_{ML}|x]$$

= $E[(A^{T}(BB^{T})^{-1}A)^{-1}A^{T}(BB^{T})^{-1}y - x \mid x] = 0$

• The covariance of the estimation error is:

$$P_e(X) = E[(x - \hat{x}_{ML})(x - \hat{x}_{ML})^{\mathrm{T}}|x] = (A^{\mathrm{T}}(BB^{\mathrm{T}})^{-1}A)^{-1}$$

- \hat{x}_{ML} is efficient in the sense of Cramér Rao bound.
- **Example:** Consider the following linear Gaussian observation: y = ax + w where a is a nonzero real number and $w \sim \mathcal{N}(0, r)$ is the observation noise.
- Maximum a Posteriori Estimation: To compute \hat{x}_{MAP} , it is assumed that the a priori density of x is Gaussian with mean m_x and variance p_x :

$$x \sim \mathcal{N}(m_x, p_x)$$

• The conditions of Sherman's Theorem is satisfied and therefore:

$$\begin{split} \hat{x}_{MAP} &= E[x|y] \\ &= m_x + \frac{p_{xy}}{p_y}(y - m_y) \\ &= m_x + \frac{ap_x}{a^2p_x + r}(y - am_x) \\ &= \frac{ap_xy + m_xr}{a^2p_x + r} \end{split}$$

• Estimation bias:

$$b_{MAP} = E[x - \hat{x}_{MAP}] = m_x - \frac{ap_x e[y] + rm_x}{a^2 p_x + r} = m_x - \frac{a^2 p_x m_x + rm_x}{a^2 p_x + r} = 0$$

• Estimation error covariance:

$$p_{MAP} = E[(x - \hat{x}_{MAP})^2] = p_x - \frac{a^2 p_x^2}{a^2 p_x + r} = \frac{p_x r}{a^2 p_x + r}$$

• Maximum Likelihood Estimation: For this example, we have:

$$f_{y|x}(y|x) = f_w(y - ax) = \frac{1}{\sqrt{2\pi r}} \exp\left(-\frac{(y - ax)^2}{2r}\right)$$

• With this information:

$$\hat{x}_{ML} = \arg\max_{x} f_{y|x}(y|x) = \frac{y}{a}$$

• Estimation bias:

$$b_{ML} = E[x - \hat{x}_{ML}|x] = x - \frac{ax}{x} = 0$$

• Estimation error covariance:

$$p_{ML} = E[(x - \hat{x}_{ML})^2 | x] = E\left[\left(x - \frac{ax + w}{a}\right)^2\right] = \frac{r}{a^2}$$

• Comparing x_{MAP} and x_{ML} , we have:

$$\lim_{p_x \to +\infty} \hat{x}_{MAP} = \hat{x}_{ML}$$

It means that if there is no a priori information about x, the two estimations are equal.

• For the error covariance, we have:

$$\frac{1}{p_{MAP}} = \frac{1}{p_{ML}} + \frac{1}{p_x}$$

- In other words, information after observation is the sum of information of the observation and information before the observation.
- Estimation error covariance:

$$\lim_{p_x \to +\infty} \hat{p}_{MAP} = \hat{p}_{ML}$$

- It is possible to include a priori information in maximum likelihood estimation.
- A priori distribution of x, $\mathcal{N}(m_x, p_x)$, can be rewritten as the following observation: $m_x = x + v$ where $v \sim \mathcal{N}(0, p_x)$ is the observation noise.
- Combined observation: z = Ax + u where:

$$z = \begin{bmatrix} m_x \\ y \end{bmatrix}, A = \begin{bmatrix} 1 & 0 \\ 0 & a \end{bmatrix}, u = \begin{bmatrix} v \\ w \end{bmatrix}$$

• The assumption is that v and w are independent. Therefore:

$$u \sim \mathcal{N}\left(0, \begin{bmatrix} p_x & 0\\ 0 & r \end{bmatrix}\right)$$

• Maximum likelihood estimation:

$$\hat{x}_{MLp}(z) = \arg\max_{x} f_{z|x}(z|x)$$

$$= \arg\min_{x} \left(\frac{(m_x - x)^2}{p_x} + \frac{(y - ax)^2}{r} \right)$$

$$= \frac{ap_x y + m_x r}{a^2 p_x + r} = \hat{x}_{MAP}$$

- \hat{x}_{MLp} is unbiased and has the same error covariance as \hat{x}_{MAP} .
- Therefore \hat{x}_{MLp} and \hat{x}_{MAP} are equivalent.

Standard Kalman Filter

• Consider the following linear system:

$$\begin{cases} x(k+1) &= A(k)x(k) + w(k) \\ y(k) &= C(k)x(k) + v(k) \end{cases}$$

where $x(k) \in \mathbb{R}^n$, $y(k) \in \mathbb{R}^m$ denote the state vector and measurement vector at time t_k .

- $w(k) \sim \mathcal{N}(0, Q(k))$ and $v(k) \sim \mathcal{N}(0, R(k))$ are independent Gaussian white noise processes where R(k) is invertible.
- It is assumed that there is an a priori estimation of x, denoted by $\hat{x}^-(k)$, which is assumed to be unbiased with a Gaussian estimation error, independent of w and v:

$$e^-(k) \sim \mathcal{N}(0, P^-(k))$$

where $P^{-}(k)$ is invertible.

- The Kalman filter is a recursive algorithm to compute the state estimation.
- Output Measurement: Information in $\hat{x}^-(k)$ and y(k) can be written as the following observation:

$$\begin{bmatrix} \hat{x}^{-}(k) \\ y(k) \end{bmatrix} = \begin{bmatrix} I \\ C(k) \end{bmatrix} x(k) + \begin{bmatrix} e^{-}(k) \\ v(k) \end{bmatrix}$$

Considering the independence of $e^{-}(k)$ and v(k), we have:

$$\begin{bmatrix} e^-(k) \\ v(k) \end{bmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} P^-(k) & 0 \\ 0 & R(k) \end{bmatrix} \right)$$

• Using the Weighted Least Square (WLS) and matrix inversion formula:

$$(A + BD^{-1}C)^{-1} = A^{-1} - A^{-1}B(D + CA^{-1}B)^{-1}CA^{-1}$$

• Assuming:

$$K(k) = P^{-}(k)C^{\mathrm{T}}(k)[C(k)P^{-}(k)C^{\mathrm{T}}(k) + R(k)]^{-1}$$

• We have:

$$\hat{x}(k) = \hat{x}^{-}(k) + K(k)(y(k) - C(k)\hat{x}^{-}(k))$$

• State estimation is the sum of a priori estimation and a multiplicand of output prediction error. Since:

$$\hat{y}^-(k) = C(k)\hat{x}^-(k)$$

- K(k) is the Kalman filter gain.
- Estimation error covariance:

$$P(k) = (I - K(k)C(k))P^{-}(k)$$

• Information:

$$\hat{x}(k) = x(k) + e(k)$$

where $e(k) \sim \mathcal{N}(0, P(k))$

- State Update: To complete a recursive algorithm, we need to compute $\hat{x}^-(k+1)$ and $P^-(k+1)$.
- Information:

$$\hat{x}(k) = x(k) + e(k)$$

$$0 = \begin{bmatrix} -I & A(k) \end{bmatrix} \begin{bmatrix} x(k+1) \\ x(k) \end{bmatrix} + w(k)$$

• By removing x(k) from the above observation, we have:

$$A(k)\hat{x}(k) = x(k+1) + A(k)e(k) - w(k)$$

• It is easy to see:

$$\hat{x}^-(k+1) = A(k)\hat{x}(k)$$

• Estimation error:

$$e^{-}(k+1) = A(k)e(k) - w(k)$$

• Estimation covariance:

$$P^{-}(k+1) = A(k)P(k)A^{\mathrm{T}}(k) + Q(k)$$

Summary:

- Initial Conditions: $\hat{x}^{-}(k)$ and its error covariance $P^{-}(k)$.
- Gain Calculation:

$$K(k) = P^{-}(k)C^{\mathrm{T}}(k)[C(k)P^{-}(k)C^{\mathrm{T}}(k) + R(k)]^{-1}$$

• $\hat{x}(k)$:

$$\hat{x}(k) = \hat{x}^{-}(k) + K(k)(y(k) - C(k)\hat{x}^{-}(k))$$

$$P(k) = (I - K(k)C(k))P^{-}(k)$$

• $\hat{x}^-(k+1)$:

$$\hat{x}^{-}(k+1) = A(k)\hat{x}(k)$$

$$P^{-}(k+1) = A(k)P(k)A^{T}(k) + Q(k)$$

• Go to gain calculation and continue the loop for k+1.

Remarks:

• Estimation residue:

$$\gamma(k) = y(k) - C(k)\hat{x}^{-}(k)$$

• Residue covariance:

$$P_{\gamma}(k) = C(k)P^{-}(k)C^{\mathrm{T}}(k) + R(k)$$

- The residue signal is used for monitoring the performance of Kalman filter.
- Modeling error, round-off error, disturbance, correlation between input and measurement noise, and other factors might cause a biased and colored residue.
- The residue signal can be used in Fault Detection and Isolation (FDI).
- The standard Kalman filter is not numerically robust because it contains matrix inversion. For example, the calculated error covariance matrix might not be positive definite because of computational errors.
- There are different implementations of Kalman filter to improve the standard Kalman filter in the following aspects:
 - Computational efficiency
 - Dealing with disturbance or unknown inputs
 - Handling singular systems (difference algebraic equations)