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« An observation is defined as:
y=h(z) +w

where z € R™ and y € R™ denote the unknown vector and the measurement
vector. h: R™ — R™ is a function of x and w is the observation noise with
the power density fo,(w).

o It is assumed that = is a random variable with an a priori power density
fxz(x) before the observation.

e The goal is to compute the “best” estimation of x using the observation.

Optimal Estimation

e The optimal estimation Z is defined based on a cost function J:

Zopt = argmin E[J(xz — 2)]

e Some typical cost functions:
— Minimum Mean Square Error (Zpya58):

Jax—2)=(x—-2)"W(@-1), W>0

— Absolute Value (Z4ps):

— Maximum a Posteriori (Zy/4p):
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o It can be shown that:
Evumse(y) = Elzly]

2ans(y) +00
7 ntalide= [ fytaly)da
—o0 Zaps(y)

Tymap = arg max Jaly(@ly)
o If the a posteriori density function f,,(x|y) has only one maximum and it

is symmetric with respect to F[x|y] then all the above estimates are equal
to Elx|y].



In fact, assuming these conditions for f,,(z|y), E(z|y) is the optimal
estimation for any cost function J if J(0) = 0 and J(z —2) is nondecreasing
with distance (Sherman’s Theorem).

Maximum Likelihood Estimation: %,y is the value of xz that maxi-
mizes the probability of observing y:

A~

Z'ML(y) = argmax fu\w(y|x)

It can be shown that Zp;;, = Zarap if there is no a priori information
about x.

Linear Gaussian Observation

Consider the following observation: y = Az + Bw where w ~ N (0,1,.) is a
Gaussian random vector and matrices A, x, and B,,x, are known.

In this observation, z is estimable if A has full column rank otherwise there
will be infinite solutions for the problem.

If BBT is invertible, then:

1
iz (ylz) = (27)"/2| BBT[1/2

X exp (—; [(y — Az)"(BBT) " (y - Aa:)])

The maximum likelihood estimation can be computed as:
&y = argmin(y — Az)T(BBT)1(y — Ax)
= (AT(BBT) A) " AT(BBT) Yy

It is very interesting that &y, is the Weighted Least Square (WLS) solution
to the following equation: y = Az with the weight matrix W = BB i.e.

Zwrs = argmin(y — AI)TW(y — Ax)

Iy is an unbiased estimation:

b(x) = E[x — &pr1|2)

=E[(A"(BB") 'A) 'AT(BB") 'y —z|z] =0



The covariance of the estimation error is:

P.(X) = El(x — darz)(@ — 1) Ja] = (AT(BB™) 1 4)~!

Zarr is efficient in the sense of Cramér Rao bound.

Example: Consider the following linear Gaussian observation: y = ax + w
where a is a nonzero real number and w ~ N(0,r) is the observation noise.

Maximum a Posteriori Estimation: To compute Zp;4p, it is assumed
that the a priori density of x is Gaussian with mean m, and variance p,:

The conditions of Sherman’s Theorem is satisfied and therefore:
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Estimation bias:

N apzelyl + rmy a?pamy + rmy
bvuap =Elx—2yapl=my———H———=my——H——— =0
a“py + 1 a“py + 17

Estimation error covariance:

o api par
ap, +1  alp 7

pyap = El(x — Zyap)?] = pe

Maximum Likelihood Estimation: For this example, we have:

Foalole) = fuly — a2) = ——exp (-2 220)

With this information:

Ears = argmax £y, (ylo) = 2

Estimation bias:
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Estimation error covariance:

purL = El(x — 2yp)?|a] = E

( aac—&—w)z
r—
a

Comparing xprap and x 7, we have:

lim QA?MAP = i'ML
Pa—+00

It means that if there is no a priori information about z, the two estimations
are equal.

For the error covariance, we have:

1 1 1
= 4+ =
PmApP  PML D=

In other words, information after observation is the sum of information of
the observation and information before the observation.

Estimation error covariance:

lim pymap =DPmL
Pz—>+00

It is possible to include a priori information in maximum likelihood esti-
mation.

A priori distribution of x, N'(m,p,), can be rewritten as the following
observation: m, = x + v where v ~ N(0, p,) is the observation noise.

Combined observation: z = Az + u where:
=[y]a=lo o =[3]
Y 0 a w

The assumption is that v and w are independent. Therefore:

(ol )

Maximum likelihood estimation:

Tmrp(z) = arg max fala(2]2)
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e Zprp is unbiased and has the same error covariance as a7 ap.

o Therefore £/, and Zarap are equivalent.

Standard Kalman Filter
o Consider the following linear system:

{x(k +1) = Ak)z(k) + w(k)
y(k) = C(k)z(k) +v(k)

where z(k) € R™, y(k) € R™ denote the state vector and measurement
vector at time t.

o w(k) ~N(0,Q(k)) and v(k) ~ N (0, R(k)) are independent Gaussian white
noise processes where R(k) is invertible.

o It is assumed that there is an a priori estimation of x, denoted by 27 (k),
which is assumed to be unbiased with a Gaussian estimation error, inde-
pendent of w and v:

e (k) ~ N(0, P (k))
where P~ (k) is invertible.
e The Kalman filter is a recursive algorithm to compute the state estimation.

¢ Output Measurement: Information in 2~ (k) and y(k) can be written
as the following observation:

a?‘(k)} [ I } {e‘ k)}
i) = let] =0+ [
Considering the independence of e~ (k) and v(k), we have:
e (k) P=(k) 0
i)~ 076"ty
o Using the Weighted Least Square (WLS) and matrix inversion formula:

(A+BD 'Oy '=At'-A'B(D+CA'B)tcA™!

e Assuming:

« We have:



o State estimation is the sum of a priori estimation and a multiplicand of
output prediction error. Since:

o K(k) is the Kalman filter gain.

o Estimation error covariance:
P(k) = (I — K(k)C(k))P~ (k)
¢ Information:
(k) = (k) + e(k)
where e(k) ~ N (0, P(k))

o State Update: To complete a recursive algorithm, we need to compute
27 (k+1)and P~ (k+1).

o Information:

2(k) = (k) + e(k)

0=[-1 Ak)] F(f(;‘)l)} + w(k)

e By removing x(k) from the above observation, we have:

AR)a(k) = a(k + 1) + A(k)e(k) — w(k)

o It is easy to see:

&= (k+1) = A(k)a(k)

o Estimation error:
e (k+1)=A(k)e(k) —w(k)

« Estimation covariance:

P~ (k+1) = A(k)P(k)AT (k) + Q(k)

Summary:
o Initial Conditions: £~ (k) and its error covariance P~ (k).

e Gain Calculation:

K (k) = P~(k)C (k)[C(k) P~ (k)C™ (k) + R(k)] ™



o 27 (k+1):
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¢ Go to gain calculation and continue the loop for k + 1.
Remarks:

o Estimation residue:

o Residue covariance:
P, (k) = C(k)P~ (k)C" (k) + R(k)

e The residue signal is used for monitoring the performance of Kalman filter.

e Modeling error, round-off error, disturbance, correlation between input and
measurement noise, and other factors might cause a biased and colored
residue.

o The residue signal can be used in Fault Detection and Isolation (FDI).

e The standard Kalman filter is not numerically robust because it contains
matrix inversion. For example, the calculated error covariance matrix
might not be positive definite because of computational errors.

e There are different implementations of Kalman filter to improve the stan-
dard Kalman filter in the following aspects:

— Computational efficiency
— Dealing with disturbance or unknown inputs
— Handling singular systems (difference algebraic equations)
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