
Motivating bialgebras and Hopf algebras
written by unnatural-transformations on Functor Network
original link: https://functor.network/user/1035/entry/887

This is part of an ongoing series on quantum groups and knot invariants, the
first few entries of which were posted on Tumblr last year. This particular post
doesn’t require any familiarity with those earlier installments.

The goal of this post is to introduce (and provide some motivation for why we
should care about) a class of algebraic structures called Hopf algebras. We
assume familiarity with the basic concepts of groups, rings, vector spaces and
fields, but not much beyond that. All rings are assumed to be unital (and all
ring homomorphisms preserve the identity), but we do not require the rings to
be commutative.

Algebras over a field

We begin by defining (associative) algebras.

Morally speaking, an algebra over a field K (algebras can be defined more
generally over any commutative ring but we will not need this more general
definition for this series) is a vector space that also has the structure of a ring, in
such a way that these two structures are “as compatible as possible”. A vector
space has notions of “addition” and “scalar multiplication”, while a ring has its
own notions of “addition” and “multiplication”. For an algebra we want those
two notions of addition to be the same, and the two notions of multiplication to
be as similar as they can be given that, for a general ring, multiplication is not
necessarily commutative.

Definition 1
An algebra is a K-vector space A together with two linear maps,

µ :A⊗A → A

and
η :K → A

such that

µ(a, µ(b, c)) = µ(µ(a, b), c) ∀ a, b, c ∈ A (1)
µ(a, η(1K) = a ∀ a ∈ A (2)
µ(η(1K), a) = a ∀ a ∈ A . (3)

Equivalently, we can express this by requiring that the following two diagrams
commute:
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A⊗A⊗A
µ⊗1

xx

1⊗µ

&&
A⊗A

µ

&&

A⊗A

µ

xx
A

K ⊗A ∼= A ∼= A⊗ K
η⊗1

vv

1⊗η

((
1

��

A⊗A

µ

((

A⊗A

µ

vv
A

Even more compactly, we can remember the slogan: an associative algebra is a
monoid in the category of vector spaces.

Here we began with a vector space A and then specified some additional linear
maps between vector spaces that (we claim) gave our vector space A a suitable
ring-structure. There is also an equivalent definition going the other way: we
begin with a ring and impose a condition in terms of morphisms between rings
that give this ring the structure of a vector space.

Before giving this alternative definition and proving it is equivalent, we had
better check that the algebra have defined really does have the structure of a
ring.

Lemma 2
Let A be an algebra over a field K. Then A is a ring.

Proof We define multiplication of elements x, y ∈ A by xy = µ(x, y). We define
the identity element in A by 1A = η(1) where 1 is the identity element of our
base field K.

To show that A is a ring, we need to show that is an abelian group under addition
(something we get for free from the fact that A is a vector space), that it is a
monoid under multiplication (which we get from the three equations we gave
in Definition 1) and that multiplication distributes over addition (which we get
from the fact we specified that µ was a linear map). There is nothing else to
prove.

Now we have:

Theorem 3
Let A be a ring. Then A is an algebra over a field K if and only if there is
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a ring monomorphism ϕ :K → Z(A), where Z(A) denotes the center of A.

Proof We start with the “only if” direction. Suppose that A is an algebra over
K.

By Lemma 2 we know that A is a ring. We claim that the required morphism
from K to the center of A is precisely the linear map η. By definition we have
η(1) = 1A so this map preserves multiplicative identities. Moreoever, since η is a
K-linear map whose domain is K itself it is in fact a ring homomorphism: since
η(λ) = λη(1) = λ1A for any λ ∈ K we must have η(λ1λ2) = η(λ1)η(λ2).

Since for any λ1, λ2 ∈ K we have λ1λ2 = λ2λ1 we must also have

η(λ1)η(λ2) = λ1λ21A = λ2λ11A = η(λ2)η(λ1) .

It follows that η(A) ⊆ Z(A).

For the “if” direction, suppose A is a ring and that ρ :K → A is a ring homo-
morphism with ρ(K) ⊆ Z(A). To show that A is a vector space over K we have
to show that it is an abelian group under addition (which it must be because it
is a ring) and define a suitable notion of scalar multiplication.

We set λ · a := ρ(λ)a. This operation is commutative, as required, precisely
because ρ(λ) is ine center of A. It also has the required distributivty properties
because ρ is a ring morphism. This completes the proof.

As well as the definition of associative algebras as particularly nice rings, or as a
“monoids in the category of vector spaces”, a third perspective is possible. This
is a somewhat more concrete view which can be useful for doing calculations.
We think of algebras as not merely abstract vector spaces but as vector spaces
with some fixed basis, and define multiplication directly in terms of the result of
multiplying two basis elements together. We are free to choose the basis however
we want, so we can fix one of the basis elements to be the multiplicative identity
element η(1) = 1A.

Definition 4
Let A be an algebra over K with basis {ei} such that e1 = 1A. Then we
define the structure constants ck

i,j ∈ K by

eiej =
∑

k

ck
i,jek.

In this notation, the associativity axiom and the fact that e1 should act as a unit
with respect to multiplication can both be captured as a relationship between
structure constants.

Proposition 5
Let A be an algebra over K with basis {ei} such that e1 = 1A and structure
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constants {ck
i,j}. Then ∑

m

cm
i,jc

n
m,k =

∑
k

cm
j,kc

n
i,m

and
cn

1,j = cn
j,1 .

Proof Since the algebra is associative we must have

(eiej) ek = ei (ejek) .

Expanding both sides of this equation in terms of the structure constants we
eventually obtain ∑

m,n

cm
i,jc

n
m,ken =

∑
m,n

cm
j,kc

n
i,men

from which the claimed identity follows at once.

For the unit, we have that η(1)ej = e1ej = eje1 = ejη(1). Expanding both sides
ofthis equation in terms of the structure constants gives∑

n

cn
1,jen =

∑
n

cn
j,1en

and again the claimed identity follows.

Before giving a few examples of algebras (see below), we note one way of
constructing new algebras from existing algebras. First we fix some notation:
for any two vector spaces U and V let τ :U ⊗ V → V ⊗ U be the unique linear
map which maps each basis element u⊗ v to v ⊗ u. Now:

Proposition 6
Let (A,µA, ηA) and (B,µB , ηB) be two algebras over a field K. Then the
tensor product A⊗B has a natural algebra structure given by

µA⊗B := (µA ⊗ µB) ◦ (1A ⊗ τ ⊗ 1B)
ηA⊗B := ηA ⊗ ηB .

Proof The maps µA⊗B and ηA⊗B are clearly linear (they are the composition
or tensor product of linear maps). That they satisfy the required axioms can be
checked by a direct calculation, which we will omit here.

We end this section by defining an algebra homomorphism: a linear map between
two algebras that preserves the algebra stucture. In the diagram notion we have
been using, this is:

Definition 7
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Given two algebras A and B, an algebra homomorphism is a linear map
ϕ :A → B such that the diagrams below commute:

A⊗A

ϕ⊗ϕ

��

µA // A

ϕ

��

K

ηA

��

ηB

��
B ⊗B

µB

// B A
ϕ
// B

Some examples You are probably already familiar with many examples of
associative algebras. You might not be familiar with all of these, but we will
return to many of them later.

• The prototypical example is the algebra of polynomials in one variable over
K, denoted K[x]. The unit is the constant polynomial 1 and multliplication
is given in the natural way. More generally the ring of polynomials in
multiple (commuting) variables K[x1, x2, ...xn] is also an algebra, as is the
ring of polynomials in multiple non-commuting variables K⟨x1, x2, . . . xn⟩.
These algebras all are infinite dimensional (as vector spaces).

• The complex numbers C are a two dimensional algebra over the real
numbers R. More generally any field extension is an algebra over its base
field. And trivially any field K is an algebra over itself.

• If G is a (finite) group, then let KG be the vector space whose basis is
the elements of G. This vector space becomes an algebra if we define the
product of two basis elements to be their product in G, and extend this
K-linearly to all elements.

• If G is a group, then let K[G] be the vector space whose basis is the set of
all linear maps from G → K.

• The Hecke algebra and Temperley-Lieb algebras defined in an earlier post
in this series are associative algebras in this sense. Recall in particular that
the Temperley-Lieb algebra is the algebra with generators U1, U2, . . . , Un

subject to the relations

U2
i = δUi for all i

UiUjUi = UjUiUj if |i− j| = 1
UiUj = UjUi if |i− j| > 1

where δ ∈ K.

• For any positive integer n, the ring Mn,n(K) of K-valued matrices is an
algebra. This example shows in particular that while the image of K under
η must be contained in the center of an algebra, it need not be equal to it.

• Many other matrix algebras are of interest. We will be particularly inter-
ested in U(g), the universal enveloping algebra of the Lie algebra g. In
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particular, U(sl2) is the (infinite dimensional!) algebra with generators
e, f, h and subject to the relations

he− eh = 2e
hf − fh = −2f
ef − fe = h

• If Q is a quiver (i.e. a directed multigraph) then the path algebra KQ is
defined to be the vector space with basis all (directed) paths in Q (including
the paths of zero length: the vertices). Multiplication of two paths is given
by concatenation (if the start and ends of the two paths agree) or is defined
to be zero (if they do not).

• If V is any vector space over K then let

T kV = V ⊗k =
k times︷ ︸︸ ︷

V ⊗ V ⊗ · · · ⊗ V ,

where in particular T 0V = K, and let

T (V ) :=
⊕
k∈N0

T kV .

We give this new (infinite-dimensional) vector space the structure of an
associative algebra – the tensor algebra – by using the natural isomoprhism
T iV ⊗ T kV → T i+jV and extending it linearly to all of T (V ). That is,
given u ∈ T iV and w ∈ T jV where

u = u1 ⊗ u2 ⊗ · · ·ui and
w = w1 ⊗ w2 ⊗ · · ·wj

we define their product to be

uv = u1 ⊗ u2 ⊗ · · · ⊗ ui ⊗ w1 ⊗ · · · ⊗ wj .

Representations of groups and algebras

Let G be a (not necessarily finite) group. By a representation of G we mean
a map ρ :G → GL(V ). the set of invertible linear transformations acting on a
(finte dimensional) vector space V . Because linear transformations on a finite
dimensional vecotr space are equivalent to n× n matrices, the map ρ extends to
a map from KG → End(V ).

It is slightly more fashionable (useful?) to talk about modules rather than
representations. A module is to an algebra (or any ring) as a vector space is to
a field. More formally

Definition 8

6



Let K be a field and A an algbera over that K. A (left) A-module M is
a vector space over K together with a map ρ :A⊗M → M such that the
following diagrams commute:

A⊗A⊗M
µ⊗1

xx

1⊗ρ

&&
A⊗M

ρ
''

A⊗M

ρ
ww

M

K ⊗M ∼= M
η⊗1

ww
1

��

A⊗M

ρ
''
M

There is an equivalent notion of right module, defined in the obvious way. Note
that any algebra A has two ‘trivial’ modules: the zero module (on which every
element of A acts like zero) and the algebra A itself (here ρ is called the regular
representation of A).

To help motivate the importance of modules, we recall some ring theory.

Definition 9
If R is a ring and I ⊆ R is a subset of R closed under addition, then I is
called:

• A left ideal if RI = I.

• A right ideal if IR = I.

• A two-sided ideal (or simply an ideal) if it is both a left and a right
ideal.

The singleton set {0} and the full ring R are both ideals of R. We can order the
set of ideals of R by inclusion to give them the structure of a lattice, where {0}
is the common least element and R is the common greatest element. If I ̸= R is
an ideal of R we say that I is maximal if, for any other ideal J , I ⊆ J implies
that either J = I or J = R.

An ideal in a ring is roughly analogous to the idea of a normal subgroup in a
group. One difference is that, in general, an ideal is not itself a ring. However,
given a ring R and a two-sided ideal I ⊆ R we can construct a new ring, called
the quotient ring, in much the same way we use a normal subgroup to construct
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a quotient group.

Definition 10
Suppose R is a ring and I ⊆ R is a two-sided ideal. Define an equivalence
relation ∼ on R by x ∼ y if (x − y) ∈ I. Then the quotient ring R/I is
the set of equivalence classes under ∼, with addition and multiplication
inherited from R. That is:

[x] + [y] = [x+ y]
[x][y] = [xy] .

Note that there is an implicit claim here that addition and multiplication are
well-defined (i.e. that they are independent of the choice of representative of
each equivalence class). Once this claim is checked it is straightforward to see
that R/I must be a ring.

If you know a little group theory, the following result should not surprise you:

Theorem 11
Let R and S be rings and ϕ :R → S a ring homomorphism. Then

• kerϕ ⊆ R is a two-sided ideal

• R/ kerϕ ∼= imϕ ⊆ S

It is clear from the definition that (left) ideals of an algebra A are (left) A-
modules. Further, the quotient ring A/I is also an A-module: ρ(a⊗ [x]) = [ax].
This then is one motivation to study modules of an algebra.

Motivation #1
The concept of ’module’ generalizes the concept of ’ideals’ and ’quotient
rings’.

A morphism between modules is a linear map that respects the action of the
algebra on these modules. In terms of diagrams:

Definition 12
Let M and N be modules for a K-algebra A. A module morphism is a
linear map f :M → N such that the following diagram commutes:

A⊗M
1⊗f //

ρM

��

A⊗N

ρN

��
M

f
// N

A invertible module morphism f :M → N whose inverse f−1 :N → M is also
a module morphism is called an isomorphism. Two modules are said to be
isomorphic if there exists an isomorphism between them. The category of A-
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modules is the category whose objects are the modules of A and whose arrows
are the module morphisms between A.

Isomorphic modules are “essentially the same”. The associated representations
are not necessarily identical but are equivalent as matrices: we have ρM (a) =
f−1ρN (a)f for every a ∈ A.

If I and J are ideals with I ⊊ J then, as A-modules, there is obviously a map
I → J . We say in this case that I is a submodule of J . Indeed, recall that the
notion of category generalizes the notion of partially ordered set. The lattice of
ideals of A is therefore contained within the category of A-modules: morphisms
between modules generalize the notion of inclusions between ideals.

Motivation #2
The category of A-modules preserves the lattice structure of ideals.

Clearly, just as the zero ideal is contained within every ideal, every submodule
contains the trivial zero module as a submodule. The modules with no submod-
ules except for themselves and this trivial module are called simple. Simple
modules turn out to be very important to the theory of modules (as usual, a
reader familar with enough group theory to have heard of the Jordan-H/“{o}lder
theorem should not be surprised by this).

It is not true that every simple module can be identified with an ideal. However,
something close to this is true:

Motivation #3
If S is a simple A-module then there exists some maximal ideal J ⊆ A such
that S ∼= M/J .

Proof We only sketch a proof here. The key is a version of the ismorphism
theorem for modules which we state but will not prove: if ϕ :M → N is a module
morphism then kerϕ is a submodule of M and imϕ is a submodule of N .

In particular, A is itself an A-module (left or right) and any (left) ideal is a
(left) module. If I ⊆ A is an ideal of A such that A/I is simple, then I must
be maximal: otherwise there exists an ideal J ⊆ A with I ⊊ I and A/J is a
submodule of A.

Now suppose S is a (non-zero) simple (left) module and choose some s ∈ S.
Define a module morphism ϕ :A → S by ϕ(a) = as. This map is clearly not
identically zero, so – as ϕ(A) must be a submodule of S – it can only be equal to
S itself. S is then isomorphic to A/ kerϕ and therefore kerϕ must be a maximal
ideal.

So ideals are not merely an arbitrary special case of modules: the connection
between modules and ideals goes in both directions.

Having motivated the idea that modules are important for understanding algebras,
we turn briefly to the question of constructing modules.
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Given any algebra A, we get an A-module for free: A itself is a module. This
is obvious if we compare the diagrams above to the diagrams that appeared
after Definition 1. In fact, we get infinitely many modules: the direct sum of
any two modules is again a module, so A⊕A, A⊕A⊕A, . . . and so on are all
A-modules. Modules of this form are called free modules.

For groups, the situation is even better. If M is a module for a group algebra
KG, then so is M ⊗M . The action of G on M is given by

g · (m⊗ n) = (g ·m) ⊗ (g ⊗ n)

for all g ∈ G. We also have a “trivial” one-dimensional module, the underlying
field K. Here the action of KG on K is given by g·1 = 1 for all g ∈ G. Furthermore,
if ρ :G → GL(V ) is a representation, then there is a second representation –
called the dual representation or sometimes the contragredient representation
– denoted ρ∗ and defined by ρ∗(g) = ρ(g−1)H , where MH denotes the conjugate
transpose of the matrix M .

For more general algebras, none of these constructions necessarily works. Indeed
most algebras do not have any notion of ‘inverses’ of their basis elements.

However, if there is a map f :A → B and V is a B-module, then we can always
extend V to an A-module by defining an action a · v = f(a) · v. In particular, if
B is a quotient algebra of A then every B-representation can be extended in this
way to an A-representation. On the other hand, if B is merely a subalgebra of A
then there is no obvious way to turn a representation of B into a representation
of A (though we can, of course, turn every representation of the larger algebra
A into a represenation of the smaller algebra B).

Some examples

• Let T4(K) be the algebra of upper-triangular 4 × 4 matrices and let
I ⊂ T4(K) be the (left) ideal consisting of matrices of the form

0 ⋆ ⋆ ⋆
0 ⋆ ⋆ ⋆
0 0 ⋆ ⋆
0 0 0 ⋆

 .

Then I is a maximal ideal, and T4(K)/I is (isomorphic to) the simple
one-dimensional module on which M = (mi,j) acts like multiplication by
the leading diagonal element m1,1.

• Let An be the Temperley-Lieb algebra on n−1 generators U1, U2, . . . , Un−1,
and let I be the (two-sided) ideal of An with basis every non-trivial word in
these n− 1 generators. Then I is a maximal ideal and An/I is (isomorphic
to) the simple-one dimensional module on which each generator Ui acts
like zero.
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• If Cn is the cyclic group ⟨g|gn = 1⟩ then there is a (non-trivial) one-
dimensional representation ρ :Cn → K given by ρ(g) = exp

( 2πi
n

)
. The

dual of this representation is given by ρ∗(g) = exp
(
− 2πi

n

)
• If C3 is the cyclic group ⟨g|g3 = 1⟩ then the regular representation is map

from C3 to M3(K) given by

ρ(g) =

0 1 0
0 0 1
1 0 0

 .

The extenstion to the regular representation for Cn should be obvious.

• The universal enveloping algebra U(sl2) has a representation ρ1 :U(sl2) →
M2(K) given by

ρ1(e) =
(

0 1
0 0

)
ρ1(f) =

(
0 0
1 0

)
ρ1(h) =

(
1 0
0 −1

)
.

• More generally, the same universal enveloping algebra U(sl2) has a repre-
sentation ρn :U(sl2) → Mn+1(K) given by

ρn(e) =



0 n 0 . . . 0 0
0 0 (n− 1) . . . 0 0
0 0 0 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0



ρn(f) =



0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 2 0 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 0 0
0 0 0 . . . n 0



ρn(h) =



n 0 0 . . . 0 0
0 (n− 2) 0 . . . 0 0
0 0 (n− 4) . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . −(n− 2) 0
0 0 0 . . . 0 −n


.
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• The Temperley-Lieb algebra has a representation given by

Ui 7→ I2i−1 ⊗


0 0 0 0
0 q −1 0
0 −1 q−1 0
0 0 0 0

⊗ I2n−i−2 ,

where q + q−1 := δ. Since the Temperley-Lieb algebra is a quotient of
the Hecke algebra, this map in turn defines a representation of the Hecke
algebra.

Coalgebras

One advantage of defining algebras in terms of commutative diagrams in some
category is that, as good category theorists, we can then ask what happens if we
reverse the direction of all the arrows. As you might have guessed, we obtain
the definition of a new algebraic structure called a coalgebra.

Definition 13
A coalgebra is a K-vector space C together with two linear maps

∆ :C → C ⊗ C

and
ϵ :C → K

such that the following two diagrams commute:

C

∆

xx

∆

&&
C ⊗ C

∆⊗1 &&

C ⊗ C

1⊗∆xx
C ⊗ C ⊗ C

C

∆

vv

∆

((
1

��

C ⊗ C

ϵ⊗1 ((

C ⊗ C

1⊗ϵvv
K ⊗ C ∼= C ∼= C ⊗ K

Coalgebras are not just a curiosity, but arise naturally in combinatorics. If we
think about multiplication (in an algebra) as a way of combining two elements to
obtain a third, then comultiplication – the linear map ∆ :C → C ⊗ C – can be
thought of as a way of decomposing an element into all the different possible pairs
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that could have been combined to obtain it. We will see this in the examples
later.

It is worth unpacking the definition of ∆ a little bit. If x ∈ C then the fact ∆ is
a linear map means that

∆(x) =
n∑

i=1
ai ⊗ bj ,

where the exact choice of ai and bj is not unique. We can fix a basis {vi} for C,
and express ∆(x) as a sum in terms of this basis, but if haven’t done this there
are lots of possible different choices of {ai} and {bi}.

When the exact choice of choices of {ai} and {bi} is not important, we can use
Sweedler notation. We write the sum ∆(x) ∈ C ⊗ C as

∆(x) =
∑

x(1) ⊗ x(2) .

Here x(1) and x(2) are not specific elements but merely placeholders representing
an arbitrary summand of the whole sum. With this notation, the coassociativty
of ∆ – the fact that (∆ ⊗ 1) ◦ ∆ = (1 ⊗ ∆) ◦ ∆ – can be described as∑

∆(x(1)) ⊗ x(2) =
∑

x(1) ⊗ x(2) ⊗ x(3) =
∑

x1 ⊗ ∆(x(2)) .

The relationship between ∆ and ϵ – the fact that (ϵ⊗ 1) ◦ ∆ = 1 = (1 ⊗ ϵ) ◦ ∆ –
can be expressed as

x =
∑

ϵ(x(1))x(2) =
∑

ϵ(x(2))x(1) .

Given any vector space V recall that we can define the dual space V ⋆ by

V ⋆ := Hom(V,K) .

In particular, an algebra A and a coalgebra C both have dual spaces. From the
duality of their definitions, we might hope that the dual space of an algebra can
be given a coalgebra structure in some natural way (and vice versa). This turns
out to be almost, but not quite, true:

Proposition 14
The dual vector space of a coalgebra is an algebra.

Proof We define multiplication of two elements f, g ∈ C⋆ = Hom(C,K) by

(fg)(x) =
∑

f(x(1))g(x(2))

for all x ∈ C, where ∆(x) =
∑
x(1) ⊗ x(2). This multiplication is associative

precisely because ∆ is coassociative. For the identity element, recall that
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ϵ :C → K is a linear map and hence ϵ ∈ C⋆. Now for any linear map f ∈ C⋆ we
must have

f(x) = f
(∑

ϵ(x(1))x(2)

)
=
∑

ϵ(x(1))f(x(2))

= (ϵf)x

and similarly

f(x) = f
(∑

ϵ(x(2))x(1)

)
=
∑

f(x(1))ϵ(x(1))

= (fϵ)x .

Suppose V is a finite dimensional vector space, so that V ∼= V ⋆. If {ei} is a
basis for V , then V ⋆ has dual basis {fi}, where the linear functions fi :V → K
are defined by

fi (ej) = δi,j =
{

1 if i = j
0 otherwise .

Proposition 15
The dual vector space of a finite dimensional algebra is a coalgebra.

Proof Here the key result we need is that, for a finite dimensional vector space
A, we have (A⋆ ⊗A⋆) ∼= (A⊗A)⋆. This means that if {ei} is a basis for A and
{fi} is a basis for A⋆ then {fi ⊗ fj} is a basis for (A⊗A)⋆. We define maps
∆ :A⋆ → (A⊗A)⋆ and ϵ :A⋆ → K by, for g ∈ A⋆,

∆(g) =
∑
i,j

g(eiej)fi ⊗ fj

ϵ(g) = g (η(1)) .

To show that ∆ is coassociative requires a little calculation.

First we note that

(∆ ⊗ 1) ∆(g) =
∑

i,j,p,q

g(eiej)fi(epeq)fp ⊗ fq ⊗ fj

and that
(1 ⊗ ∆) ∆(g) =

∑
i,j,p,q

g(eiej)fj(epeq)fi ⊗ fp ⊗ fj .

14



We can rewrite the second of these equations as

(1 ⊗ ∆) ∆(g) =
∑

i,j,p,q

g(epei)fi(eqej)fp ⊗ fq ⊗ fj .

Comparing coefficients, we want to show that∑
i

g(eiej)fi(epeq) =
∑

i

g(eiej)fj(epeq) .

Now we make use of the fact that eiej =
∑

n c
n
i,jen and fi(ej) = δi,j . We have

∑
i

g(eiej)fi(epeq) =
∑

i

(∑
n

cn
i,jg(en)

)
ci

p,q

=
∑

n

(∑
i

cn
i,jc

i
p,q

)
g(en) .

We also have

∑
i

g(eiej)fj(epeq) =
∑

i

(∑
n

cn
p,ig(en)

)
ci

q,j

=
∑

n

(∑
i

cn
p,ic

i
q,j

)
g(en) .

But in fact we have ∑
i

cn
i,jc

i
p,q =

∑
i

cn
p,ic

i
q,j

as this is exactly the relationship between structure constants that tells us that
A is associative. So the desired equality follows at once and ∆ is coassociative,
as claimed.

For the counit relationship we want to show that

g =
∑
i,j

g(ei, ej)ϵ(fi)fj =
∑
i,j

g(ei, ej)fiϵ(fj) .

. That is, we want to show that∑
j

g(e1ej)fj =
∑

i

g(eie1)fi .

15



Indeed, uing the structure constants, we have g(e1ej) = cn
1,jg(en) and g(eje1) =

cn
j,1g(en). It is not hard to see that the claimed identity follows from the fact

that cn
1,j = cn

j,1.

Note the lack of symmetry here: in general, the dual space of an arbitrary
infinite-dimensional algebra is not a coalgebra. This is a sign that algebras and
coalgebras differ in some substantial ways. More generally, we have the so-called
Fundamental Theorom of Coalebgras:

Theorem 16
If C is a coalgebra then every x ∈ C is an element of some finite dimensional
subcoalgebra of C. In particular, C is the union (and hence the sum) of its
finite dimensional subcoalgebras.

Proof Let d ∈ C. Let ∆2 := ∆ ⊗ 1 = 1 ⊗ ∆. Then

∆2(d) =
∑
i,j

ai ⊗ bi,j ⊗ cj ,

where we are free to chose both {ai} and {cj} to be linearly independent, and
we will do so.

Let B ⊂ C be the subspace of C spanned by {bi,j}. We want to show that B is
a subcoalgebra of C – in other words, that B ⊆ B ⊗B.

Note that by coassociativty we have 1 ⊗ ∆ ⊗ 1 = 1 ⊗ 1 ⊗ ∆. This means that∑
i,j

ai ⊗ ∆(bi,j) ⊗ cj =
∑
i,j

ai ⊗ bi,j ⊗ ∆(cj) .

But we have chosen {ai} is a linearly independent set. So this previous equation
tells us that ∑

j

∆(bi,j) ⊗ cj =
∑

j

bi,j ⊗ ∆(cj)

for all i ∈ I.

It follows then that ∑
j

∆(bi,j) ⊗ cj ∈ B ⊗ C ⊗ C ,

and as {cj} is a linearly independent set it follows that ∆(bi,j) ∈ B ⊗ C for all
i ∈ I, j ∈ J .

Symmetrically, from the fact that 1 ⊗ ∆ ⊗ 1 = ∆ ⊗ 1 ⊗ 1, we can show that
∆(bi,j) ∈ C ⊗B for all i ∈ I, j ∈ J .

Hence it follows that

∆(bi,j) ∈ (B ⊗ C) ∩ (C ⊗B) = B ⊗B ,

16



where for this last equality we use the general fact that if U and V are vector
spaces with U ⊆ V then (U ⊗ V ) ∩ (V ⊗ V ) = U ⊗U . This completes the proof.

No similar result holds for algebras. For example, consider the algebra K[x] of
polynomials in one variable. This is an infinite dimensional algebra generated
by the element x. But this then means that x cannot be contained in any finite
dimensional subalgebra.

Although we will not define them here, there are dual concepts of all the algebra
conceptswe have described so far. There are coideals, cokernels, comodules and
so on.

Some examples

• The matrix coalgebra has elements the set Mn(K) of n× n matrices. This
vector space has basis {Ei,j} where Ei,j is the matrix whose entries are all
zero except for a 1 in position (i, j). A coalgebra structure on this vector
space is given on basis elements by

∆(Ei,j) = Ei,j ⊗ Ei,j

ϵ(Ei,j) = δi,j .

where ⊗ is the Kronecker matrix product and δi,j is the Kronecker delta,
that is

δi,j =
{

1 ifx = y
0 ifx ̸= y

.

• If G is a (finite) group then ϵ(g) = 1 and ∆(g) = g ⊗ g for all g ∈
G. Elemebts of other coalgebras that have this second property are
correspondingly called grouplike elements.

• If P is a partially ordered set, let [x, y] := {z ∈ P | x ≤ z ≤ y}. The
incidence coalgebra is the K-vector space with basis {[x, y] | x, y ∈ P} and
comultiplication and counit given by

∆([x, y]) =
∑

x≤z≤y

[x, z] ⊗ [z, y]

ϵ([x, y]) = δx,y ,

where δx,y is the Kronecker delta defined above.

• There is a coalgebra structure on U(sl2), given by – for any z ∈ {e, f, h} –
ϵ(z) = 0 and ϵ(z) = 1 ⊗ z + z ⊗ 1. Elements of other coalgebras that have
this second property are called primitive.

• The ring of polynomials k[x] can be given a coalgebra structure. We have
ϵ(x) = 0 and

∆(xn) =
n∑

k=0

(
n
k

)
xk ⊗ xn−k.

.
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• Similarly, for a quiver Q we can define a path coalgebra. The counit of
any non-trivial path is zero while the comultiplication of a path is the
sum of all pairs of paths whose concatenation gives that path. In fact,
the previous example is just a special case of this for the quiver with one
vertex and one edge labelled x.

• We previously defined an algebra structure on the infinite dimensional
space T (V ). This space can also be given the structure of a coalgebra. Let
Rn,p ⊂ Sn be the set of all permutations σ with the property that

σ(1) < σ(2) < · · · < σ(p)

and
σ(p+ 1) < σ(p+ 2) < · · · < σ(n) .

. We call this the set of (n, p) riffle shuffles. For v1 ⊗ · · · ⊗ vn ∈ T (V ) we
now define

∆(v1 ⊗ · · · ⊗ vn) =
n∑

p=0

∑
σ∈Rn,p

vσ(1) ⊗ · · · ⊗ vσ(p) ⊗ vσ(p+1) ⊗ · · · ⊗ vσ(n).

We define the counit by ϵ(1) = 1 and otherwise

ϵ(v1 ⊗ · · · ⊗ vn) = 0 .

Note that the elements v ∈ V are primitive in the sense defined earlier:
∆(v) = 1 ⊗ v + v ⊗ 1.

Bialgebras and Hopf algebras

Similarly to how we motivated an algebra as being both a vector space and a
module in a compatible way, a bialgebra is both an algebra and a coalgebra in
some compatible way.

In order to define the right notion of compatibility, we return to the notion of
an algebra homomorphism. First, recall that if A is an algebra then so is A⊗A.
Something very similar holds for coaelgbras.

Proposition 17
Let (C,∆C , ηC) and (D,∆C , ϵD) be two coalgebras over a field K. Then
the tensor product C ⊗D has a natural coalgebra structure given by

∆C⊗D := (1C ⊗ τ ⊗ 1D) ◦ (∆C ⊗ ∆D)
ηC⊗D := ϵC ⊗ ϵC .

Equally, there is a dual notion of coalgebra homomorphism::

Definition 18

18



Given two algebras C and D, an algebra homomorphism is a linear map
ϕ :D → D such that the diagrams below commute:

C

ϕ

��

∆C // C ⊗ C

ϕ⊗ϕ

��

C
ϕ //

ϵC ��

D

ϵD

��
D

∆D

// D ⊗D K

Motivated by the definition of an algebra morphism and a coalgebra morphism,
we now have the right notion of compatibility:

Definition 19
A bialgebra is a K-vector space B together with linear maps

µ :B ⊗B → B ,

η :K → B ,

∆ :B → B ⊗B

and
ϵ :B → K

such that (A,µ, η) is an algebra, (A,∆, ϵ) is a coalgebra and the following
diagrams commute:

B ⊗B ⊗B ⊗B
1⊗τ⊗1 // B ⊗B ⊗B ⊗B

µ⊗µ

''
B ⊗B

∆⊗∆
77

µ
// B

∆
// B ⊗B

B ⊗B

µ

��

ϵ⊗ϵ

xx

B

∆

��

K ⊗ K ∼= K K ⊗ K ∼= K
η⊗η

xx

η

ff

B

ϵ

ff

B ⊗B

K 1 //

η
��

K

B

ϵ

??

where τ :B ⊗B → B ⊗B is the linear map defined by τ(x⊗ y) = y ⊗ x for
all x, y ∈ B.
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You can think of the diagrams as either telling us that ∆ and ϵ are algebra
morphisms or equivalently that µ and η are coalgebra morphisms. To move from
one perspective to another, we simply rotate the diagrams in the obvious way.

Recall that the reason we were led to discuss coalgebras was the representation
theory of algebras. In particular, we are trying to find algebras which share some
of the nice represention theory properties of group algebras.

One further such nice property of group algebras comes from the fact that each
element of the basis is invertible.

Definition 20
A Hopf algebra is a K-vector space H together with linear maps

µ :H ⊗H → H ,

η :K → H ,

∆ :H → H ⊗H ,

ϵ :H → K

and
S :H → H

such that (H,µ, η,∆, ϵ) is a bialgebra and the following diagram commutes:

H ⊗H
S⊗1 // H ⊗H

µ

##
H

∆
;;

∆ ##

ϵ // K
η // H

H ⊗H
1⊗S

// H ⊗H

µ

;;

Not every bialgebra can be given the structure of a Hopf algebra, but when this
is possible there is always only one way to do it. This is equivalent to the fact
that if a monoid has an identity element (ie if it is a group) then that identity
element must be unique (and the proof of both results is similar).

Proposition 21
Suppose that (H,µ, η,∆, ϵ, S) is a Hopf algebra and that T :H → H is a
linear map such that the diagram below commutes (i.e. suppose T is an
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antipode).

H ⊗H
T ⊗1 // H ⊗H

µ

##
H

∆
;;

∆ ##

ϵ // K
η // H

H ⊗H
1⊗T

// H ⊗H

µ

;;

Then T = S.

Proof Let x ∈ H. Then ∆(x) =
∑

i∈I ai ⊗ bi and we can choose {bi} such that
they form a linearly independent set. By the diagram above (and the similar
diagram defining an antipode) we have∑

i∈I

S(ai)bi = η(ϵ(x)) =
∑
i∈I

T (ai)bi ,

which implies that, because the {bi} are linearly independent, we must have
S(ai) = T (ai) for all i ∈ I.

Since S and T are linear maps, it follows that

S(x) = S

(∑
i∈I

ϵ(bi)ai

)
=
∑
i∈I

ϵ(bi)S(ai)

=
∑
i∈I

ϵ(bi)T (ai)

= T

(∑
i∈I

ϵ(bi)ai

)
= T (x) ,

and since this is true for an arbitrary x it follows that S = T .

Finally, we can put everything together and start talking about the representation
theory of Hopf algebras. We only state a few initial definitions and results here
but we will return to this topic in the next part of this series.

Definition 22
By a monoidal category we mean a tuple (C,⊠,1, α, λ, ρ) where

• C is a category with objects Obj(C) and arrows Arr(C)

• ⊠ : C × C → C is a functor called the tensor product
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• 1 ∈ Obj(C) is an object in C called the unit object

• α : (− ⊠ −) ⊠ −
∼=−→ − ⊠ (− ⊠ −) is a natural isomorphism called the

associator with components αx,y,z : (x⊠ y) ⊠ z → x⊠ (y ⊠ z)

• λ : (1⊠−)
∼=−→ − is a natural isomorphism called the left unitor with

components λx : 1 ⊠ x → x

• ρ : (− ⊠ 1)
∼=−→ − is a natural isomorphism called the right unitor with

components ρx :x⊠ 1 → x

such that the following diagrams commute for any x, y, z, w ∈ Obj(C):

((w ⊠ x) ⊠ y) ⊠ z

αw,x,y⊠idz

uu

αw⊠x,y,z

))
(w ⊠ (x⊠ y)) ⊠ z

αw,x⊠y,z

��

(w ⊠ x) ⊠ (y ⊠ z)
αw,x,y⊠z

��
w ⊠ ((x⊠ y) ⊠ z)

idw ⊠αx,y,z

// w ⊠ (x⊠ (y ⊠ z))

(x⊠ 1) ⊠ y
αx,1,y //

ρx⊠idy %%

x⊠ (1 ⊠ y)

idx ⊠ρyyy
x⊠ y

Proposition 23
Let B be a bialgebra and let B−Mod denote the category of left B-modules.
Then B − Mod is a monoidal category.

Proof In fact in this case all three isomorphisms α, λ and ρ are simply the
identity map, so we can omit them here.

Suppose that U and V are two B-modules. Then the vector space U ⊗V naturally
has the structure of a B ⊗B algebra: for any x⊗ y ∈ B ⊗B, u ∈ U and v ∈ V
we have

(x⊗ y) · (u⊗ v) = (x · u) ⊗ (y · v) .

Now we can use the fact that ∆ :B → B ⊗ B is an algebra morphism to give
U ⊗ V the structure of a B-module. For any x ∈ B we have

x · (u⊗ v) = ∆(x) · (x⊗ y) = (
∑

x(1) ⊗x(2)) · (u⊗ v) =
∑

(x(1) ·u) ⊗ (x(2) · v) .

We can call this new B-module U ⊠ V . That this operation satisfies the required
associativty axioms follows at once from the fact that ∆ is coassociative.
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For the unit object we use the fact that ϵ :B → K is a algebra homomorphism.
This makes K a B-module and the axioms relating ϵ to the other structure maps
of B ensure this module has the required properties.

Definition 24
Let (C,⊠,1, α, λ, ρ) be a monoidal category and let x, y ∈ Obj(C). We say
that x is left dual to y – and conversely that y is right dual to x – if there
exist arrows

ηx,y : 1 → y ⊠ x

and
ϵx,y :x⊠ y → 1

such that the following diagrams commute:

x⊠ (y ⊠ x)
α−1

x,y,x // (x⊠ y) ⊠ x

ϵx,y⊠idx

��
x⊠ 1

idx ⊠ηx,y

OO

1⊠x

λxyy
x

ρ−1
x

ee

(y ⊠ x) ⊠ y
αy,x,y // y ⊠ (x⊠ y)

idy ⊠ϵx,y

��
1⊠y

ηx,y⊠idy

OO

y ⊠ 1

ρy

zz
y

λ−1
y

dd

If x⋆ ∈ Obj(C) is both left dual and right dual to x we say simply that it is
dual to x. If every object in a monoidal category has a dual then we say
that the monoidal category is rigid.

Proposition 25
Let H be a Hopf algebra and let H − mod denote the category of finite
dimensional (as vector spaces over K) left H-modules. Then H − mod is a
rigid monoidal category.

Proof Clearly H − mod is a monoidal category because H is a bialgebra. What
we have to show is that this category is rigid.

For any algebra A, if M is a (right) A-module then the dual M⋆ := Hom(M,K)
is a left A-module. If a ∈ A, m ∈ M and ψ :M → K, then we define a left action
of A on M⋆ by

(a · ψ)(m) := ψ(m · a) .

23



This operation actually extends to a duality between the category of left modules
and the category of right modules.

For H a Hopf algebra, the existence of the antipode S :H → H gives us a second
way of translating between left and right modules. IF M is a left H-module,
then let M be the right module with the action of A on M defined by

m · a := S(a) ·m .

Combining these two notions of duality gives us the duals we want. If U is any
finite dimensional left H-module, then (U)⋆ is also a (finite dimensional) left
H-module. That this module has the required properties is left as an exercise.

Note that if U is a finite dimensional H-module with basis {ei} and {fi} is
the corresponding dual basis of (U)⋆ then the maps ϵU,(U)⋆ and ηU,(U)⋆ – called
evaluation and coevaluation respectively – are given explicitly by

ϵU,(U)⋆ (fi ⊗ ej) = ⟨fi, ej⟩ = δi,j

and
ηU,(U)⋆ (1) =

∑
i

fi ⊗ ei .

We will consider the category of modules of a Hopf algebra in more detail in
later instalments in this series.

Some examples

• As stated in the motivation, the antipode for any group algebra KG is
the map that sends g to g−1 for every g ∈ G. Indeed, KM is actually a
bialgebra for any monoid M . An antipode for this bialgebra – making it a
Hopf algebra – exists if and only if every element of M is invertible: that
is, if M is in fact a group.

• We have given algebra and coalgebra structures for the vector space with
basis the set of all n × n matrices. These two structures are in fact
compatible, making the vector space a bialgebra. However it can be shown
that this bialgebra has no antipode.

• We also saw previously that the tensor space T (V ) can be given both an
algebra and a coalgebra structure. These structures are also compatible,
making T (V ) a bialgebra. Furthermore, an antipode for this bialgebra is
given by S(1) = 1 and

S(v1 ⊗ v2 ⊗ · · · ⊗ vn) = (−1)mvm ⊗ vm−1 ⊗ · · · v1

meaning that T (V ) is actually a Hopf algebra. Moreover, if B is any bialge-
bra with n primitive elements, then there is a morphism from T (Kn) → B
which maps each of the he canonical basis elements v1, v2, . . . , vn ∈ Kn to
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a distinct primitive element of B. This means that, if U is a B-module for
any bialgebra B, it is also a module for some tensor space algebra (using
the construction given earlier).

• For U(sl2) the antipode is defined by S(e) = −e, S(f) = −f and S(h) =
−h. It is straightforward to check that this linear map has the required
properties. For example,

(µ ◦ (S ⊗ 1) ◦ ∆) (e) = (µ ◦ (S ⊗ 1)) (1 ⊗ e+ e⊗ 1)
= µ (1 ⊗ e− e⊗ 1)
= e− e

= 0
= η(0)
= η(ϵ(e)) .

• Staying with the algebra U(sl2), we can now give an explicit example of how
the coproduct lets us build up new representations. Since ∆(x) = 1⊗x+x⊗1
for each of the primitive elements e, f, h, we can define a new representation
ρ1,1 by

ρ1,1(x) = ρ1(1) ⊗ ρ1(x) + ρ1(x) ⊗ ρ1(1)

=
(

1 0
0 1

)
⊗ ρ1(x) + ρ1(x) ⊗

(
1 0
0 1

)
,

where on the last line ⊗ denotes the Kronecker product. Direct calculation
then gives us that

ρ1,1(e) =


0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0



ρ1,1(f) =


0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0



ρ1,1(h) =


2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

 .

The reader can check that this is indeed a valid representation of the
algebra. In fact, for

T =


1 0 0 0
0 1

2
1
2 0

0 0 0 1
0 1 −1 0


25



further calculation gives us that

T−1 ((ρ2 ⊕ ρ0)(xe+ yf + zh))T =


1 0 0 0
0 1

2
1
2 0

0 0 0 1
0 1 −1 9


−1

2z 2x 0 0
2y 0 x 0
0 y −2z 0
0 0 0 0




1 0 0 0
0 1

2
1
2 0

0 0 0 1
0 1 −1 9



=


2z x x 0
y 0 0 x
y 0 0 x
0 y y −2z


= ρ1,1(xe+ yf + zh) ,

and so the new representation ρ1,1 is equivalent to the direct sum of two
of the other representations we introduced previously. This is the first hint
of a much more general result called the Clebsch-Gordan decomposition
formula which we might return to later.

• An algebra A is called commutative if, for every x, y ∈ A, we have

µ(x⊗ y) = xy = yx = µ(y ⊗ x) .

Similarly a coalgebra C is cocommutative if, for every x ∈ C, we have

∆(x) :=
∑

x(1) ⊗ x(2) =
∑

x(2) ⊗ x(1) .

Most of the bialgebras we have seen so far are either commutative or
cocommutative or both. For example, a group algebra is commutative
exactly when the underlying group is abelian, but is cocommutative no
matter the group. Sweedler’s Hopf algebra is the four dimensional algebra
with generators x, g, g−1 subject to the relations

x2 = 0
g2 = 1
gx = −xg .

The coproduct is given by

∆(g) = g ⊗ g

∆(x) = 1 ⊗ x+ x⊗ g ,

the counit is given by

ϵ(g) = 1
ϵ(x) = 0 ,

and the antipode is given by

S(g) = g−1

S(x) = −xg−1
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Sweedler constructed this algebra in 1969 as an example of a Hopf algebra
that was neither commutative nor cocommutative. We will see many more
examples of such Hopf algebras in the next post in this series.
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