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This is just mathematical background needed to understand the book.It contains
the Math Appendix and Ch5 (the Math tools chapter). I will collect substantive
results from the book in a separate post.

For further reference:

1. Bertsekas-Shreve 1978: Stochastic Optimal Control, The Discrete Time
Case (fairly advanced due to its generality and abstractness, to my surprise)

2. Yong-Zhou 1999: SMP & HJB
3. Fleming-Soner 2006: Controlled Markov Processes and Viscosity Solutions
4. Oksendal-Sulem 2007: Applied Stochastic Control of Jump Diffusions
5. Pham 2010: Cont-time Stochastic Control and Optimization with Fin

Applications
6. Touzi 2013: Optimal Stochastic Control, Stochastic Target Problems, and

Backard SDE (advanced)

Appendix: Stochastic Calculus
definition of Brownian Motion;

definition of stochastic (Ito) integral. Shorter way:

1. for adapted, L2 proecss g, define It =
∫ t

0 gsdWs = lim
∥Πk∥→0

∑nk

m=1 gtm−1(Wtm
−

Wtm−1)

2. this It is called an Ito process, and often written as dIt = gtdWt. Can
show that this SP (It) is a martingale.

3. More generally, Ito process can be written as It =
∫ t

0 µsds +
∫ t

0 σsdWs

4. generally, we just need µt and σt to be adapted and satisfy certain inte-
grability conditions. But in the special case where µt, σt = µ(t, It), σ(t, It),
the equation dIt = µtdt + σtdWt is called SDE. But namewise, book also
mentioned that Ito processes are stochastic processes satisfying
SDEs with Brownian noise terms.

definition of stochastic (Ito) integral. Rigorous way:

1. define Ito integral for simple functions
2. prove that any g ∈ L2 can be approximated, in L2, by sequence of simple

functions
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3. define Ito integral for g as the limiting value of the Ito integral of the
sequence of simple functions

Ito isometry: for adapted g ∈ L2, E[(
∫ T

0 gsdWs)2] = E[
∫ T

0 g2
sds]

infinitesimal generator: the generalization of derivative of a function, to make
it applicable to stochastic process. Ltf(x) ≡ lim

h↓0
E[f(Xt+h)|Xt=x]−f(x)

h

This is the generator of an Ito process satisfying a certain SDE, e.g., dXt =
µ(t, Xt)dt + σ(t, Xt)dWt.

Jump Processes

Poisson process
N = (Nt)t∈[0,T ], valued in Z+, with intensity param λ, is a SP s.t.:

1. N0 = 0, a.s.
2. Nt − N0 has Poisson distro with param λt: P (Nt − N0 = n) = e−λt (λt)n

n!
3. has independent increments: Nt − Ns is independent of Nv − Nu

4. has stationary increments: Ns+t − Ns
d= Nt

Classic result 1: time between successive jumps of N are independent, and
exponentially distributed.

compensated Poisson process:
N̂ with N̂t ≡ Nt − λt. Note that this is a martingale.

as with BM, we can define stochastic integrals wrt compensated
Poisson processes in a way that the resulting integral process is a
martingale.

let g be adapted, define stochastic integral Y = (Yt)t∈[0,T ] of g wrt N̂ by:

Yt =
∫ t

0 gs−dN̂s =
∑Nt

k=1 gτ−
k

−
∫ t

0 gsλds, where the τi’s are jump times.

1. need gs− , not gs, to make integral a martingale.
2. alt. def: replace first term with

∑Nt

s∈[0,t] gs−∆Ns, where ∆Ns ≡ Ns − Ns− ,
which in this case is either 0 or 1. sum over a continuum of s, what
is the formal def?

Ito formula for Poisson process

recall we can write dYt = −λgtdt + gt−∆Nt

Ito’s formula for such process Y is:
suppose Z = (Zt)t∈[0,T ] satisfies Zt = f(t, Yt) for differentiable f . Then:

dZt = (∂tf(t, Yt) − λgt∂yf(t, Yt))dt + [f(t, Yt− + gt−) − f(t, Yt−)]dNt

or written in compensated poisson process.

we also see from this (compensated version) formula that the generator of the
process Y is LY

t f(y) = λ([f(y + gt) − f(y)] − gt∂yf(y))
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jump diffusion Yt =
∫ t

0 fsds +
∫ t

0 gsdWs +
∫ t

0 hs−dN̂s

Ito formula for jump diffusion for the above Y , let Z = (Zt) be defined by
Zt = ℓ(t, Yt), then:

dZt = (∂t + ft∂y + 1
2 g2

t ∂yy − λht∂y)ℓ(t, Yt)dt + [ℓ(t, Yt− + ht−) − ℓ(t, Yt−)]dNt

again, common to write it using compensated poisson process dN̂t.

compound Poisson process J = (Jt)t∈[0,T ] is built out of:

1. a Poisson process N with intensity λ
2. a collection of iid RVs {ϵ1, ϵ2, ...}, with common distro F

Jt ≡
∑Nt

k=1 ϵi. The process jumps when Poisson event arrives, but the jump size
is drawn from F .

We can show, as before:

1. Ĵ defined by Ĵt = Jt − E[ϵ]λt is a martingale

2. we can define stochastic integral wrt compound Poisson too.
∫ t

0 gs−dĴs =∑
s≤t gs−∆Js −

∫ t

0 gsλE[ϵ]ds

3. note that ∆Jt = Jt − Jt− = ϵNs
∆Ns

4. a Ito’s formula for Zt ≡ ℓ(t, Yt) where dYt = ftdt + gtdWt + ht−dĴt

Doubly Stochastic Poisson Processes (Cox process)

these are jump processes which has stochastic intensity

1. given counting process N , we want its intensity process λ = (λt)t∈[0,T ] be
stochastic

2. the approach is to give a way to compute the probability that an event
arrives at t, given info we have at time s: to define P (Nt − Ns = n|Fs),
where F is the natural filtration generated by (N, λ).

3. P (Nt − Ns = n|Fs ∨ σ({λu}u∈[s,t])) = e
−

∫ t

s
λudu (

∫ t

s
λudu)n

n!

4. this means: P (Nt − Ns = n|Fs) = E[e−
∫ t

s
λudu (

∫ t

s
λudu)n

n! |Fs]

5. the driver of the intensity process can be diverse, leading to
Feller/OU/Hawkes processes.

6. as before, can define its compensated version N̂t = Nt −
∫ t

0 λsds which is
a martingale; can define stochastic integral wrt the compensated doubly
stochastic Poisson process, and can derive a Ito’s formula for such integral
processes, and from which we can derive an expression for the generator of
the joint process (N, λ).
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Feynman-Kac

certain linear PDEs are related to SDEs.

Let X be an Ito process satisfying: dXt = µ(t, Xt)dt + σ(t, Xt)dWt.

The generator of X is then LX
t where LX

t f = µ(t, x)∂xf + 1
2 σ2(t, x)∂xxf

Now suppose we try to solve PDE: ∂tf(t, x) + LX
t f(t, x) + g(t, x) = γ(t, x)f(t, x),

with terminal condition f(T, x) = h(x),

then we have a probabilistic representation of solution f(t, x):

f(t, x) = Et,x[
∫ T

t
e

−
∫ s

t
γ(u,Xu)du

g(s, Xs)ds + e
−

∫ T

t
γ(u,Xu)du

h(XT )]

(note there is a typo in the book)

Consider the simplest example:
{

∂th(t, x) + 1
2 ∂xxh(t, x) = 0

h(T, x) = H(x)

1. Now introduce a BM X, and define ft ≡ E[H(XT )|Ft]

2. (ft) is a martingale, and Markov: ft = g(t, Xt) for some g

3. use Ito’s lemma to write out g(t + h, Xt+h) − g(t, Xt)

4. devide the above by h and take limit, we get 0 = ∂tg(t, x) + 1
2 ∂xxg(t, x)

5. by definition, g(T, x) = H(x). Thus, g(t, x) satisfies the PDE. Recall
g(t, x) ≡ E[H(XT )|Ft].

Ch5 Stochastic Optimal Control and Stopping
A few motivating examples (just to be familiar with notation)

Merton Problem

value function: H(S, x) = sup
π∈A0,T

ES,x[U(Xπ
T )], where:

1. at t, place πt dollars in risky asset
2. wealth level is Xt

state dynamics follow:

1. dSt

St
= (µ − r)Stdt + σStdWt

2. dXπ
t = (πt(µ − r) + rXπ

t )dt + πtσdWt

At,T is the admissible set, the set of F-predictable, self-financing strategies
satisfying

∫ T

t
π2

sds < ∞. (to prevent doubling strategies)

Optimal Liquidation

H(x, S, q) = sup
ν∈A0,T

E[Xν
T + Qν

T (Sν
T − αQν

T ) − ϕ
∫ T

0 (Qν
s )2ds]
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state dynamics follow:

1. dQν
t = −νtdt (note the sign)

2. dSν
t = −g(νt)dt + σdWt

3. Ŝν
t = Sν

t − h(νt)
4. dXν

t = νtŜ
ν
t dt

At,T is the set of F-predictable, non-negative bounded strategies (excluding
repurchasing of shares, and keep liquidation rate finite)

optimal Limit Order placement identical value function expression, just
change the ν to δ, which means that agent posts a LO at St + δt when current
stock price is St.

state dynamics:

1. Mt denotes market orders
2. St = S0 + σWt

3. dXδ
t = (St + δt)(−dQδ

t )
4. dQδ

t = −1U(P (δt))dMt

book mentioned uniform distribution U , but I don’t quite understand it. The
logic is straightforward though: the probability of your limit order getting
executed is a decreasing function of δt.

below the book gave 3 types of problems:

1. control for diffusion proecsses
2. control for counting processes
3. countrol of stopping times

The derivation of DPP & HJB may seem pedantic, but one has to see such
arguments at some point. I find the book’s exposition at a nice balance of rigor
and accessibility (sacrificing a bit generality, compared with other treatment
say in Nisio’s book) therefore I will not skip the derivations and only provide a
“cookbook”. Due to the similarities, I will only copy the derivation of DPP&HJB
for control of diffusion processes.

general control problem for diffusion processes

problem statement:

H(x) = sup
u∈A0,T

E[g(Xu
T ) +

∫ T

0 F (s, Xu
s , us)ds]

where:

1. dXu
t = µ(t, Xu

t , ut)dt + σ(t, Xu
t , ut)dW t

2. Xu
0 = x
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Here A is the set of F-predictable processes s.t. the state dynamics admits a
strong solution. Also assume some nice properties of µt, σt such as Lipschitz
continuity.

note that predictability is necessary since otherwise the agent may be able to
peek into the future to optimize her strategy.

we embed optimization problem into a larger class of problems indexed by time,
but equal to the original problem at t = 0.

performance criterion (associated with u) Hu(x) ≡ Et,x[G(Xu
T ) +∫ T

t
F (s, Xu

s , us)ds]

value function H(t, x) ≡ sup
u∈At,T

Hu(t, x)

First, we establish DPP:

∀(t, x) ∈ [0, T ] × Rn, and ∀ stopping times τ ≤ T , we have:

H(t, x) = sup
u∈A

Et,x[H(τ, Xu
τ ) +

∫ τ

t
F (s, Xu

s , us)ds]

We prove this by showing two-sided inequality.

H(t, x) ≤ sup
u∈A

Et,x[H(τ, Xu
τ ) +

∫ τ

t
F (s, Xu

s , us)ds]

1. Hu(t, x) = Et,x[G(Xu
T ) +

∫ T

τ
F (s, Xu

s , us)ds +
∫ τ

t
F (s, Xu

s , us)ds]

2. using LIE: Hu(t, x) = Et,x[Eτ,Xu
τ

[G(Xu
T ) +

∫ T

τ
F (s, Xu

s , us)ds] +∫ τ

t
F (s, Xu

s , us)ds]

3. Hu(t, x) = Et,x[Hu(τ, Xu
τ ) +

∫ τ

t
F (s, Xu

s , us)ds]

4. we know that ∀u, H(t, x) ≥ Hu(t, x)

5. Hu(t, x) ≤ Et,x[H(τ, Xu
τ ) +

∫ τ

t
F (s, Xu

s , us)ds]

6. taking supremum over u ∈ A on the RHS, and then taking supremum on
the LHS, we finally get:

7. H(t, x) ≤ sup
u∈A

Et,x[H(τ, Xu
τ ) +

∫ τ

t
F (s, Xu

s , us)ds]

Now, we show the reverse inequality.

H(t, x) ≥ sup
u∈A

Et,x[H(τ, Xu
τ ) +

∫ τ

t
F (s, Xu

s , us)ds]

1. assuming the value function is continuous in the space of con-
trols, we pick a control vϵ ∈ A such that it is almost perfect: H(t, x) ≥
Hvϵ(t, x) ≥ H(t, x) − ϵ

2. Take an arbitrary control u, modify our almost-optimal control: ṽϵ =
ut1t≤τ + vϵ1t>τ
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3. Note that this modified control is almost-optimal after τ , but suboptimal
on [t, τ ]. Anyway, we have H(t, x) ≥ H ṽϵ(t, x)

4. by LIE: H ṽϵ(t, x) = Et,x[H ṽϵ(τ, X ṽϵ

τ ) +
∫ τ

t
F (s, X ṽϵ

s , ṽϵ
s)ds]

5. the RHS above is equal to: Et,x[Hvϵ(τ, Xu
τ ) +

∫ τ

t
F (s, Xu

s , us)ds]

6. the RHS above satisfies inequality: RHS ≥ Et,x[H(τ, Xu
τ ) +∫ τ

t
F (s, Xu

s , us)ds] − ϵ

7. let ϵ ↓ 0, and take the supremum of RHS, we arrive at the desired inequality.

the DPP is really a sequence of equations. An even more powerful
equation can be found by looking at its infinitesimal version – DPE
(HJB).

two key ideas in deriving DPE:

1. let τ be small: specifically, let it be the minimum between the time it takes
for Xu

t to exit a ball of radius ϵ around the starting position, and a fixed
small time h. note that if we let h ↓ 0, we would eventually have
τ = t + h, since as h shrinks, it is less and less likely that X will
exit the ball first.

2. assuming enough regularity of value function, write the value func-
tion using Ito’s lemma:

H(τ, Xu
τ ) = H(t, x) +

∫ τ

t
(∂t + Lu

s )H(s, Xu
s )ds +

∫ τ

t
DxH(s, Xu

s )′σu
s dWs

Note that here u is an arbitrary control, and Lu
t is the infinitesimal generator

of Xu
s . Note also that as an example, Lu

t = µ(t, x, u)∂x + 1
2 σ2(t, x, u)∂xx, so it

is about the local behavior: note that the u in µ, σ2 is an action, not the whole
(time-indexed) strategy.

Now, we derive HJB: ∂tH(t, x) + sup
u∈A

(Lu
t H(t, x) + F (t, x, u)) = 0

We prove this by showing two-sided inequality.

∂tH(t, x) + sup
u∈A

(Lu
t H(t, x) + F (t, x, u)) ≤ 0

1. take arbitrary v ∈ A such that it is CONSTANT over [t, τ ]

2. as shown before (DPP), H(t, x) ≥ sup
u∈A

Et,x[H(τ, Xu
τ )+

∫ τ

t
F (s, Xu

s , us)ds]

3. RHS ≥ Et,x[H(τ, Xv
τ ) +

∫ τ

t
F (s, Xv

s , v)ds]

4. RHS = Et,x[H(t, x)+
∫ τ

t
(∂t +Lv

s )H(s, Xv
s )ds+

∫ τ

t
DxH(s, Xv

s )′σv
s dWs +∫ τ

t
F (s, Xv

s , v)ds]

5. by our choice of τ , can show the stochastic integral is indeed a martingale,
therefore we have:

6. H(t, x) ≥ Et,x[H(t, x) +
∫ τ

t
(∂t + Lv

s )H(s, Xv
s )ds +

∫ τ

t
F (s, Xv

s , v)ds]
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7. Now we let h ↓ 0, so that τ = t + h, a.s.

8. 0 ≥ lim
h↓0

Et,x[ 1
h

∫ τ

t
{(∂t + Lv

s )H(s, Xv
s ) + F (s, Xv

s , v)}ds]

9. RHS is equal to: (∂t + Lv
t )H(t, x) + F (t, x, v), where we used the mean

value theorem

10. this this inequality holds for arbitrary v ∈ A, take the supremum we have:
∂tH(t, x) + sup

u∈A
(Lu

t H(t, x) + F (t, x, u)) ≤ 0

note that the v here is used a bit loosely here. Sometimes it denotes the whole
strategy, sometimes it denotes the constant action applied in [t, τ ].

Now we show the reverse inequality, by showing that for the optimal control u∗,
we have ∂tH(t, x) + sup

u∈A
(Lu

t H(t, x) + F (t, x, u)) = 0

1. by LIE, H(t, x) = Et,x[H(τ, Xu∗

τ ) +
∫ τ

t
F (s, Xu∗

s , u∗)ds]

2. apply Ito’s lemma as before, writing H(τ, Xu∗

τ ) in terms of H(t, x), we
will find the desired equality.

Combined these two parts, we arrive at DPE (HJB):∂tH(t, x) + sup
u∈A

(Lu
t H(t, x) + F (t, x, u)) = 0

H(T, x) = G(x)

Note that optimal control in HJB is an action, and can be written in feedback
form in terms of the value function. Substituting this optimal control back into
HJB we get non-linear PDEs.

Often we define (maximized) Hamiltonian as:

H(t, x, DxH, D2
xxH) = sup

u∈A
(Lu

t H(t, x) + F (t, x, u))

Note that some define Hamiltonian with generic costates, and optimality is
associated with those costates being equal to partial derivatives of value function.

DPE provides a necessary condition for optimality. We use verification theorems
to prove sufficiency. Basically, it says that if you can find a solution to DPE,
and demonstrate that it is a classical solution (once differentiable in time and
twice differentiable in state vars), and the resulting control is admissible, then
the solution is indeed the value function, and the resulting control is indeed the
optimal Markov control. Under some more technical assumptions, can show that
the optimal control is indeed Markov, and therefore we have found not just the
optimal Markov control but the optimal F−predictable control.

(not so general) control problem for counting processes

just a special case to build intuition: agent control the frequency of jumps of a
counting process N .
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performance criteria

Hu(n) ≡ E[G(Nu
T ) +

∫ T

0 F (s, Nu
s )ds]

value function H(n) = sup
u∈A0,T

E[G(Nu
T ) +

∫ T

0 F (s, Nu
s , us)ds], where:

1. u = (ut)t∈[0,T ] is control process
2. (Nu

t )t∈[0,T ] is a controlled doubly stochastic Poisson process, starting at
N0− = n, with intensity λu

t = λ(t, Nu
t− , ut)

3. as a result, N̂u
t = Nt −

∫ t

0 λu
s ds is a martingale

DPP
H(t, n) = sup

u∈A
Et,n[H(τ, Nu

τ ) +
∫ τ

t
F (s, Nu

s , us)ds]

DPE∂tH(t, n) + sup
u∈At

(Lu
t H(t, n) + F (t, n, u)) = 0

H(T, n) = G(n)

Note that Lu
t H(t, n) = λ(t, n, u)[H(t, n + 1) − H(t, n)]

Thus, if we plug in the infinitesimal form, we get:

sup
u∈At

λ(s, n, u)[H(t, n + 1) − H(t, n)] + F (t, n, u)

if F = 0, then optimal control is to make λ as large as possible or as small as
possible depending on the sign of [...], i.e., bang-bang controls.

Two ways to break this uninteresting feature:

1. F ̸= 0
2. add another SP driven by the counting process, thus this new SP is

controlled indirectly, and have this new SP affect performance

Similar DPE for the problem with jump-diffusions.

Stopping Problems

performance criterion Hτ (t, x) = Et,x[G(Xτ )]

where X = (Xt)t∈[0,T ] is a jump diffusion following:

dXt = µ(t, Xt)dt + σ(t, Xt)dW t + γ(t, Xt)dN t

where N is a multi-dim counting process with intensities λ(t, Xt).

value function H(t, x) = sup
τ∈T[t,T ]

Hτ (t, x)

The difficult problem is to characterize the (boundary) of the stopping region.
Again we have our DPP and DPE.
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DPP H(t, x) = sup
τ∈T[t,T ]

Et,x[G(Xτ )1τ<θ + H(θ, Xθ)1τ≥θ], for all stopping times

θ ≤ T .

intuition: if τ∗ occurs prior to θ, then agent’s value function is just the reward
at τ∗. If not, then at θ agent receives the value function evaluated at the current
state.

DPE H solves the variational inequality:

max{∂tH + LtH, G − H} = 0, on [0, T ] × Rm.

The proof follows Touzi 2013, which is nice as it is related to viscosity solutions
(needed when value function itself is not smooth enough to differentiate)

Interpretation of this HJBQVI:

1. in the continuation region, ht ≡ H(t, Xt) is a martingale

2. in the stopping region, if you don’t stop, the linear operator tries to
render the value function negative. But we pin it to the reward (constant).
therefore, it is again a martingale.

3. so the SP ht corresponding to the flow of the value function is a martingale
on the entire [0, T ] × Rm.

Finally, for combined stopping and control problems, we have DPE of the same
format, but now we need to also do optimization in the continuation region,
therefore the DPE reads:

max{∂tH + sup
u∈At

Lu
t H, G − H} = 0

You see now that in the continuation region, the value function needs to satisfy
a general non-linear HJB, instead of a linear PDE.
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