
Bismuth-Gueant-Pu 2019: Portfolio choice . . .
under drift uncertainty
written by User 1006 on Functor Network
original link: https://functor.network/user/1006/entry/625

A very mathy paper with detailed derivations. Useful for getting comfortable
with cont time Bayesian learning in portfolio-related problems.

Intro

Historical background: Markowitz 1952 studies one-period portfolio choice
problem in mean-variance framework. Then, CAPM was introduced based
on this idea. Samuelson and Merton then generalized Markowitz problem to
multi-period consumption/investment problem (in discrete and continuous time,
respectively).

Specifically, Merton used PDE techniques to characterize optimal consumption
and portfolio (investment) cohice processes. Extensions were introduced such as
transaction costs & credit constraints.

Major advances to solve Merton’s problem in full generality by Karatzas et
al using martingale methods. This work itself was extended and we can use
martingale method to solve Merton’s problem for almost any smooth utility
function.

Prop1: under Q, µ is independent of W Q
t , ∀t ∈ [0, T ].

Proof: we know that µ is independent of Wt under P. We try to use this condition
to show that ∀a, b, we have EQ[eiaµ+ibWQ

t ] = EQ[eiaµ]EQ[eibWQ
t ].

We first use some algebraic manipulations to show that EQ[eiaµ+ibW Q
t ] =

E[eiaµ]e− t
2 b2 .

then recall dQ
dP = e−α(µ)WT − 1

2 α(µ)2T , where α(µ) ≡ µ−r
σ .

Thus, E[ dQ
dP |µ] = 1. We use this to show that EQ[eiaµ] = E[eiaµ].

Then, we recall that the standard normal distribution has charactersitic function
e− t2

2 . So e
t
2 b2 = EQ[eibWQ

t ]. Thus we are done.

Now we can start deriving an expression for βt ≡ E[µ|FS
t ]. And an expression

for the dynamics of (βt).

1. βt = ΣG(t, Yt) + r

2. dβt = ΣDyG(t, Yt)(σdŴt)
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Optimal Portfolio Choice

note that this is a Merton portfolio choice problem, the “strategy”
here refers to the shares of stocks held, not the trading speed as in
A&C.

Given strategy (Mt)t∈[0,T ], the portfolio value process (Vt)t∈[0,T ] satisfies:

dVt = (Mt(µ − r) + rVt)dt + σMtdWt

Note also that Vt here refers to the portfolio value at t, not the market volume
V i

t later when we consider the A&C type problem.

We rewrite portfolio value process as:

dVt = (Mt(βt − r) + rVt)dt + σMtdŴt

we can then plug in the expression for βt.

We also rewrite dYt (recall Yt ≡ log(St)) using β and dŴ .

Finally, starting at (t, y), we could express Y t,y
s and V t,V,y,M

s using the integram
forms.

Define value function v(t, V, y):

v(t, V, y) ≡ sup
(Ms)s∈[t,T ]∈At

E[−e−γV t,V,y,M
T ]

Note that here V is not value function, but the “wealth” process (of the portfolio),
while y is the current log stock price.

The associated HJB is:

∂tu + rV ∂V u + ... = 0, with terminal condition u(T, V, y) = −e−γV .

To solve this HJB, use an ansatz: u(t, V, y) = −e−γ(er(T −t)V +ϕ(t,y))

Plugging in, we get a simple, linear parabolic PDE, and can use the classic
Feynman-Kac representation to write a strong solution of it.

Then, paper gives derivation of similar results for the case of CRRA agents.

Optimal portfolio choice in Gaussian case: two routes

again, solving optimal portfolio choice problem boils down to solving linear
parabolic PDEs in the CARA & CRRA case. one case for which these PDEs
have closed form solutions is when the prior is Gaussian.

There are two routs to solve the problems with PDEs: using β as state var, or
using y. (again, recall y is log stock price)

First, we can show that under Gaussian prior, we have simplified expression for
β and its dynamics:

1. define Γt ≡ (Γ−1
0 + tΣ−1)−1
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2. βt = ...
3. dβt = ...

classic result is that the posterior distro of µ given FS
t is N(βt, Γt). Note that

the covariance matrix process (Γt)t) is deterministic.

the problem can be written with two sets of state vars:

1. (y, V )
2. (β, V )

We can consider the previous optimization problem as being described by:

1. dYt = ...
2. dVt = ...

or,

1. dβt = ...
2. dVt = ...

Because G(t, ·) is affine in y for all t ∈ [0, T ] in the Gaussian case, we see
from the Feynman-Kac representation that ∀t, ϕ(t, ·) is a polynomial
of degree 2 in y. But looking for this polynomial using PDE is
cumbersome.

The main reason is that β is in fact a more natural variable to solve the problem,
than y. In fact, the best ansatz if we try to solve the problem using state (y, V )
is:

ϕ(t, y) = a(t) + 1
2 G(t, y)′B(t)G(t, y).

plugging in this form to HJB we get system of linear ODEs for a(t) and B(t).

Now, solve the problem using β as a state var. define value function ṽ(t, V, β)
via:

ṽ(t, V, β) ≡ sup
M∈Ãt

E[−e−γV t,V,β,M
T

]

where:

1. βt,β
s = β +

∫ s

t
...

2. V t,V,β,M
s = V +

∫ s

t
...

Then again, formulate HJB with terminal condition, make ansatz, and derive
the associated system of linear ODEs.

Online learning & execution costs

Present a general optimization problem, derive HJB, derive a simpler PDE using
ansatz. Then focus on special cases.
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Again, here I consider the special case of a single risky asset, along with a bond
with return r = 0.

The risky asset has price dynamics: dSt = µdt + σdW i
t . µ is unknown, with

prior distro denoted by muµ.

Again, let βt ≡ E[µ|FS
t ]

Theorem 8: define function F (t, S) ≡
∫
R ez

S−S0− t
2 z

σ2 mµ(dz), this function is well-
defined. Let’s define another function G via: G ≡ ∇SF

F , then βt = σ2G(t, St).

Then, define (Ŵt)t∈R)+ by Ŵt ≡ Wt +
∫ t

0
µ−βs

σ ds. We can show that (Ŵt)t∈R)+

is a BM adapted to (FS
t )t∈R+ , and dSt = βtdt + σdŴt = σ2G(t, St)dt + σdŴt.

Now, we use inventory level q and cash level X as state variables.
1. qt = q0 +

∫ t

0 vsds 2. dXt = −vtStdt − VtL( vt

Vt
)dt

Here (Vt) is a deterministic process modelling the market volume for
the risky asset. L models execution costs, and satisfies certain properties like
convexity. (In Almgren-Chriss, L(y) = ηy2)

Writing all the processes in the integral form:

1. Xt,x,S,v
s = x +

∫ s

t
(−vtS

t,S
τ − Vτ L( vτ

Vτ
))dτ

(starting at time t, when stock price is at S, agent’s cash is at x, and agent uses
trading stategy v)

2. qt,q,v
s = q +

∫ s

t
vτ dτ

3. St,S
s = S +

∫ s

t
σ2G(τ, St,S

τ )τ +
∫ s

t
σdŴt

Suppose agent’s initial state is (x0, q0, S0). The optimization problem is:
sup

(vt)t∈[0,T ]

E[−e−γ(X
0,x0,S0,v

T
+q

0,q0,v

T
S

0,S0
T

−ℓ(q
0,q0,v

T
))]

1. often in liquidation problem assume ℓ(q) = 1
2 Aq2.

Introduce value function V(t, x, q, S), we can write a general HJB and terminal
conditions.

Can also make an ansatz of the form of the value function: V(t, x, q, S) =
−e−γ(x+qS−θ(t,q,S)), and then the HJB as well as the terminal conditions would
be written in terms of this θ(t, q, S), which is not dependent on current wealth
level x.

Note that in the general case, this simpler HJB is still not linear,
and does not have closed form solutions generally (hence numerical
schemes are required such as S-DFP may be of relevance). however, in
the special case where:

1. Gaussian prior
2. execution costs and penalty functions are quadratic as in Almgren-Chriss
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then solving the problem boils down to solve a system of ODEs. Specifically, we
can show that in this special case, θ(t, q, S) = a(t)+ 1

2 b(t)G(t, S)2+G(t, S)(c(t)q+
e(t)) + ..., where a(t), b(t), ... solve a system of ODEs.

Finally, some numerical experiments. Main feature is trend following: buy
stocks when stock price increases, sell stocks when price decreases, in a smooth
manner.
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