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Stochastic Jump Diffusions (Ch1-Ch3)

Overall I find the writing of this book to be sloopy and imprecise at times, and
some crucial concepts could have been more carefully explained, This can be
quite annoying if you are teaching yourself with this. While it certainly is much
simpler than Oksendal-Sulem and avoids semimartingales all together, I really
cannot recommend teaching yourself with this book. So I decided to stop using
this book after reading the first 3 chapters. My summaries are below.

Chl Stochastic Jump and Diffusion Processes

Markov Process

SP X (¢) is a Markov process if the conditional probability satisfies: V¢ > 0, VAt >
0,Vz € D, (domain of state space), we have Pr[X (t+ At) = z| X (s),s € [0,t]] =
PriX(t+ At) = z| X (¢)].

Wiener Process
the standard Wiener process W (t) has:
1. continuous path: W(tt) = W(t™) = W(¢)

independent increments: AW (t;) = W (t; + At;) — W(t;) are mutually
independent for all ¢; on non-overlapping time intervals

N

3. W(t) is a stationary process: the distro of AW(¢) is independent of ¢.
Note that it is really difference stationary, should say Brownian motion
has “stationary increments” to be precise.

4. W(t) is Markov
5. W(t) N(0,t), so the density of W (t) is ¢w ) (w) = ¢n(w;0,t) = 217#6_%
6. W(0) = 0 with prob 1: ¢y o+)(w) = d(w)

7. Cov[W(t), W(s)] = min[t, s]

So, if we think of Brownian increments of equal time steps, A[W (¢t + iAt)] =
W(t+ (i + 1)At) — W(t + iAt), where ¢« = 0,1, .... These are iid with normal
distro:

Paw () (w) = ¢n(w;0,At) = e 3




The book then refer to dW (t) = W (t + dt) — W(t) as “differential process”, and
when dt > 0, it has the same distro as W (dt), which is normal with mean 0 and
variance dt.

Non-differentiability of sample path: V¢ > 0,Vz > 0, Pr[Ali_r}%ﬁHmZit(t” >z]l=1

Poisson Processes
1. P(t) has unit jumps: if jumps occurs at T}, then P(T,) = P(T}, + 1
2. P(t) is right-continuous
3. P(t) has independent increments: AP(t;) = P(t;+At;)—P(t;) are mutually
independent for all ¢; on non-overlapping time intervals

4. P(t) is a stationary process: distro of AP(t) = P(t + At) — P(t) is
independent of ¢. Again, the terminology should be “stationary increments”.

5. P(t) is Markov: Pr[P(t + At) = k|P(s),s < t] = Pr[P(t + At) = k|P(t)]
6. P(t) is Poisson distributed with mean y = At and variance 02 = Mt
Opy (ks At) = PrlP(t) = k] = pr(At) = e’M()‘k#l)k. Here py denotes the
probability of the Poisson RV being equal to k, not some parameter.
7. P(07) = 0" with probability 1: pi(07) = dx 0
8. Cov[P(t), P(s)] = Aminlt, s]
9. (P(t) — At) is a martingale
Thus as for BM, A[P(t +iAt)] = P(t + (i + 1)At) — P(t + iAt) are iid, and has
the same discrete Poisson distribution as P(At): ®ap(k; AAL) = Pr{AP(t) =
_ _ —AAE(AADE
k] = pr(AAt) = e e
As with BM, define dP(t) = P(t + dt) — P(t), and this has the same discrete
k
distro as P(dt), i.e., Dap (ks Adt) = PrdP(t) = k] = pr(Adt) = et Q0
If we are to simulate P(t), usually simulate time between jumps as we can show

that Ty11 — T has exponential distro: ®ar, (At) = Pr(T —T; < At|T;] =
1 — e AAT,

Poisson 0-1 Jump law

As At — 0, AP(t) = 1 with probability AAt, otherwise no jumps. Other
possibilities have probabilities that vanish quicker than these two. To be “precise”,
the book states it as:

1. As At — 07, Prl[AP(t) = 0] = 1 — AAt + O (\A¢)
2. As At — 0%, Pr[AP(t) = 1] = MAt + O?(\A?)
3. As At — 0T, Pr[AP(t) > 1] = O*(\At)

Then using this 0-1 jump law, we formally write E[f(dP(t))] =4 (1 — Adt)f(0) +
Adtf(1)



temporal /non-stationary Poisson process
time dependent jump rate: A = A(¢).

given the rate process A(t), define A(t) = fot A(s)ds, or in differential form,
dA(t) = A(t)dt.

The **temporal Poisson process* has the following analogous results:

1. Bypry (ks A(t)dt) = PrldP(t) = K] = pp(A(t)dt) = e~ MOt Q0"
2. ®pp (ki AM(E) = PrIAP(t) = k] = pr(AA(1)) = e~ A0 (A"
3. ®pey (ks A(t)) = PriP(t) = k] = pr(A(t)) = e—A® AL

4. E[AP(t)] = AA()

o

Var[AP(t)] = AA(t) = [T A(s)ds
6. up to order dt, with prob A(¢)dt we have dP(t) = 1, otherwise dP(t) =0

7. inter-jump times is again exponentially distributed: ®ar, |7,_, (At) =
— [T\ de
1—e “Ti—1
Ch2 Stochastic Integration for Diffusions

Jump diffusion SDE with initial conditions has the form:

1. dX(t) = F(X(b),t)dt + g(X(£),t)dW () + h(X (1), £)dP(t)

This is a symbolic equation, it has no meaning until we specify the methods of
integration for the 3 types of integrals:

X(t) =0+ [y f(X(s),8)ds + [y g(X(s),5)dW (s) + [; h(X(s),s)dP(s)
Riemann Integration
1. use I[f](t) to denote fo s)ds

2. the partition of the interval [0,¢] is index by tg = 0,¢1, ..., tn, tn41 =t. A
total of n + 1 intervals. Denote dt,, as mesh size

3. on each subinterval, take an “approximation point” t; = t; + 6;At;, where
0; € [0, 1].
4. Define (constructively) I[f](t) =  lim [I,(LQ) [f1(t)], where ¥ [£1(t)
n—00,0t, —0
Dico ftive, )AL

5. Because BM W(¢) is continuous with probl, the integral of
F(W(t),t) wrt t can be defined via Riemann: fo s)ds =
hm [Zz o f(W(t;:),ti)At;]. Here we chose § = 0 but any 9 is ﬁne



6. Even for X(t) as solutions to jump-diffusion SDEs, can define
I s)ds this way.

7. StleltJes mtegral refers to a deterministic integration wrt the position on
the path of X (t). Define it (constructively) as: fot f(X(s),s)dX(s) =
hm [ZZ o J(X(ti +0AL),t; + 0A)(X (tiy1) — X (t;))]. This makes sense

1f X(t ( ) is continuous and BV.
Ito integration wrt W (¢)

start with trying to define I[W](t) = fot ) You would expect it may

mimic deterministic case where I((det)) fo X(s)=1 fot d(x?
1(X2(t) — X?(0)). But turns out to be not the case.

So we go back to a discrete approximation first, and we use Ito’s choice of
approximation (# = 0) to preserve independent increments:

IOWI(t) = S0, W) AW (1) = S W, AW,
After some algebra, we can show that I3 [W]() = F(W2(t) = >0 (AW;)?)

Then the book calculated the expectation of this expression, which is 0, and
claims that this suggest a reasonable form of stochastic integral to be: I[W](t) =
(W2(t) — t). I don’t see why it seems natural, but certainly the sum of the
squares converge to ¢t in L2 sense, and in the end the conjecture is correct.

convergence in mean square The RV IT(LO)(t) converges in mean square to RV
ms
I(t) if E[(IV () — I(£))?] = 0, and we write it as I(t) = lim [I3” ()], or we use
n—oo

the notation "= which stands for Ito mean square equals to$.

It would seem here that whenever this ‘= appears, to its right it should be a
discrete approximation, for example, t "= """ (AW;)2. However, later on this
=% is used quite generously.

Then book proves the ms limit of the sum of squared Brownian increments is ¢,
and using that, we can prove the ms limit of I5’ [W](t) is indeed §(W?2(t) — t).

This gives a rigorous definition of the expression fg W (s)dW (s), now we move
to define Ito integral for more general integrands.

Ito mean square (ims) limit stochastic integral

For integrals of the form I[g ft s)dW (s), we first define its forward
integration approx1mat10n as:

IO[g)(t) = 1 g(W k), t) (W (ti1) — W (E)),

then, denote I0)[g](t) = Tim (I 7(10)[ 1(1)]

n—roo



If this limit exists, we define I[g](t) to be this limit 7("*)[g](t). Note that we
would need to require g to be bounded in the sense that E[f:o g*(W(s), s)ds] is
finite. Note also that I[g](¢) in principle have other evaluations, depending on
our choice of “§”.

The book then summarizes the results so far, by claiming:

1. fot(dW)Q(s) ms ey (recall we said this notation "% will be used quite
generously later. This is one instance)

2. [ W (s)dW(s) "= L(W2(t) —t)

The first expression is meant to say:

. ms
Jo @ y2(s) "™ T[S (AW)*(1)] = ¢
n—oo

That is, sometimes we see a Ito integral to the left of "=’ and to the right we
have some term not involving n. The discrete approximation is then implicit — we
approximate the Ito integral as the ms limit of a discrete forward approximation,
which is then shown to equal to the RHS. It’s hard for me to see the necessity of
putting “ims” on top of the inequality, but I guess the book emphasizes that the
symbolic stochastic integral doesn’t have to be calculated in the Ito sense, using
the forward difference. So we want to emphasize we are taking the Ito integral
by writing “ims” on top.

It is indeed remarkable that you can take an arbitaray Brownian sample path,
partition time interval into fine subintervals, and then calculate the sum of the
square of Brownian increments for different terminal time. It turns out this
sum as a function of terminal time resembles the linear function y(t) = ¢. Note
it is just one arbitrary sample path, we are not empirically verifying the ms
convergence.

Compare this the continuously differentiable case, the corresponding quadratic
of a differential $(dx)"{2}(t) would be negligible relative to terms of order dt:

fg(dx)Q(s) = lim [>1 (Az;)?], and after some algebra we can show that this

n—oo
is equal to 0.

I find mathstackexchange has some nice discussion on (dW)? = dt. I’ll
summarize it here.

1. one can show Z?zl 9(By,_,)(Bi, —By,_,)? converges to fg 9(Bs)ds as mesh
size goes to 0

2. this is based on the fact that B? — t is a martingale
3. It seems natural to DEFINE fotg(Bs)dBf = lim 377 (B, ,)(By, —
n—oo
Btj—1)2

4. thus, we have fot g(Bs)dB? = fg g(By)ds, ergo, the heuristic rule


https://math.stackexchange.com/questions/81865/wiener-process-db2-dt

The second expression of the book (fg W (s)dW (s) fms L(W2(t) —t)) gives the
following expression by the book:

W (t)dW (¢ ) & 1(d(W?)(t) — dt). It reads “equal in dt-precision mean square. I
don’t see how this can be useful though.
fundamental theorem of Ito calculus

1. if g(+) is continuous, then al[f(;s g(W(s))dW (s)] e g(W (t))dW (t)

2. if G(-) is C1, then [} dG(W(s)) "2 G(W(t)) — G(0)

for exact derivatives, Ito stochastic integration and ordinary Riemann
integration agree.

Now I have no idea what this is supposed to mean. First of all, the RHS of
eql. is not a well-defined random variable. Also, some book calls fundamenal
theorem of Ito calculus to be Ito’s lemma.

But as we mentioned before % denotes dlscrete approximation so for eql the
discrete approx is A fo W (s))dW (s)] = t+At - fo 5))dW (s).

Then, [72" g(W (s)dW (s) ~ g(W () AW (t) — g(W ())dW (¢), where we used
contmulty of g, W.

For eq2, the formal derivation is then: LHS = IZHSI > o (GW (tigr)) —
n oo
G(W(t:)))].

ms
Then we see that the terms cancel so that LHS = lim [ ((G(W (t;41)) —
n—oo :

GW(t:)))] = GW(t)) — G(0)

In general, some assumptions are needed so that ms convergence works. The
book calls it “i-PWCA”, aka Piece-Wise-Constant Approximationsin the Ito
Sense. This is consistent with more standard/modern treatment of Ito integral
where we use a sequence of simple functions to approximate the integrand in the
L2 sense.

Then, it is shown that if we assume ms integrability: E ftt 2(W(s), s)ds] < oo,

we have E[f:o g(W(s),s)dW(s)] = "° 0. While it is kinda intuitive when we write
the discrete approximation using forward difference, the rigorous proof is not
trivial at all.

Ito isometry

j; $)dW (s))?] "2 j; s), s)|ds

E[(ft0 f(W(s),s)dW (s)) fto g(W(r),r)dW (r)] "= [2 E[f(W(s),s)g(W(s), s))ds



Finally, this section establishes some other properties of Ito integral, such as
linearity, additivity, continuity of sample paths. And demonstrated the heuristic
rules such as dtdW (t) = 0.

Note that now we know that it means: (dW)® = 0 here is written as (dW)3(t) %

ms
zms

0, and it means fo (dW)3(s) = 0.

Stratonovich Integral Recall Ito approximates integrand using 8 = 0. Now
we do discrete approximation for general 6.

= [EW(s)dW (s) = I [W](t) = S0y W (tir0) AW,

We would then manipulate this sum to get familiar terms like >_(AW;)?, and
new terms like > (W (t;19) — W (t;))? which can be shown to converge ms to 6t.
In the end, we have:

Jo W(s)dW(s) £ IO[W)() = §W2() - (4 — o)t

Stratonovich sets 8 = % Note that when 6 # 0, the expectation of the integral
in general is not 0.

Ch3 Stochastic Integration for Jumps

A more modern/standard treatment of this topic is here. The author is Nicolas
Privault and he has extensive notes online about stochastic analysis and math
fin.

Definition: fot h(X(s),s)dP(s) "Z° IZHSI oo M(X(t),t;) AP(t;)] (we require
n o0

E[f(;5 h?(X (s),s)ds] to be finite, and we need Y (t) = h(X(t),t) to satisfy the
“-PWCA” assumption, i.e., can be well approximated by simple functions)

Following the same “proof”, we can show the “fundamental thm of Poisson jump
calculus:

L d(fy h(P(s))dP(s)) "= h(P(t))dP(t)
2. [y dH(P(s) "= H(P(t)) — H(0)
Again, I don’t know exact what eql means. Its proof says:
LLA(fy h(P(s))dP(s) = (37 = [)h(P(s))dP(s)
1.2 f”“ h(P(s))dP(s) ~ h(P(t))AP(t)
1.3 h(P(t))(P(t+ At) — P(t)) = h(P(t))dP(t)
* now I think of it, perhaps the " in eql should be replaced with Z.%*
Now, the book moves on to prove a special case: I[P](t) = fo P(s)dP(s) “ms

3(P(P = 1))(t) = I[P)(1)


https://personal.ntu.edu.sg/nprivault/MA5182/stochastic-calculus-jump-processes.pdf
https://personal.ntu.edu.sg/nprivault/indext.html
https://personal.ntu.edu.sg/nprivault/indext.html

It seems like a heuristic argument based on “dt-calculus” is provided first, then
the ms limit is rigorously proven.
Then this is generalized to: fot h(P(s))dP(s) "2’ kpfo)_l h(k)

Note that if P(t) = 2, then the integral evaluates to h(0) 4 h(1). This is because
we are using forward approximation: at the time when the Poisson process
jumps from 0 to 1, the contribution to the integral is h(0), and when the Poisson
process jumps from 1 to 2 (at some time before t), it contributes another term
h(1), and that’s it.

Also note that Nicolas Privault seem to disregard the issue with P(t) — 1
and just write fOT N.dN; = Z,iv:Tl k = %NT(NT + 1). This seems to be the
standard dcﬁn1t1on . elsewhere people talk about for a deterministic function

N(t)
u, fo = (1 u(Tk).
Fmadly7 we have the most general Poisson integral formula:
T zms P(t _
Jo MX(s),$)dP(s) "= S0 X (T, ),

unfortunately I don’t know what T} is supposed to mean and I don’t know why
we have P(t) instead of P(t) — 1 as before. Book on p73 mentioned that it is
“pre-jump time”, as if it is an actual time instant. I thought X (7, ) might mean
the left limit of X (-) at Ty, but the book also uses expressions like ¢; + At < T},
as if it really is a particular constant.

update: I was reading Seydel’s “Tools for Computational Finance” when it
occurred to me that we do need to distinguish between pre- and post- jump
values, since it is awkward to say that the jump size is 2 times the current state,
for example, as the current state already incorporates the jump. So often, we
say jump size is 2 times the pre-jump value of the current state.

Specifically, on p61 of Seydel, jump size is defined as AS = S;+ — S,-, where:
1. 77 denotes the infinitesmial instant immediately after jump
2. 77 denotes the infinitesmial instant immediately before jump
Although I still feel like we could have just write 7+ as 7.
Then some heuristic rules are derived:
1. atdPt) £ o
2. dP(t)dw (t) £ o
3. (dP)"(t) £ aP(t)
And finally, isometry is proved. Letting dP(t) = dP(t) — A(t)dt, we have:

L. E[[! h(X(s),s)dP(s)] "= 0

2. B[} hi(X(s),8)dP(s) [} ha(X(r),r)dP(r)] "= [} Blh1(X(s),5)ha(X(s), 5)|]\(s)ds


https://math.stackexchange.com/questions/359286/distribution-of-stochastic-integral-w-r-t-to-centered-poisson-process
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