Inductive limit topology on $C_c(X)$

written by Chun Ding on Functor Network original link: https://functor.network/user/1/entry/946

details to be checked...

Definition 1. Let E be a vector space, and (E_{α}) be a family of topological vector spaces and for each α , let f_a be a linear mapping of E_{α} in E. The inductive limit topology on E with respect to the family (E_{α}, f_{α}) is the final locally convex topology on E such that each f_{α} is continuous.

Proposition 2. The final locally convex topology on E exists. Moreover, if \mathcal{N}_{α} be a base of neighborhoods of 0 in E_{α} for each α , then the following sets form a base of neighborhoods of 0 in E:

$$\bigcup_{\alpha} \{ S \subset E \colon f_{\alpha}^{-1}(S) \in \mathcal{N}_{\alpha} \quad \forall \alpha \}.$$

Let X be a locally compact Hausdorff space. The inductive limit topology on $C_c(X)$ is with respect to the family $(C_c(X,K),i_K)$, where K runs over all compact subsets of X and i_K is the inclusion map of $C_c(X,K)$ in $C_c(X)$.

Proposition 3. The following set is a base of inductive limit topology on $C_c(X)$:

$$\bigcup_{K\subset X\ compact} \{f\in C_c(X,K)\colon \|f\|_{\infty}<\frac{1}{n_K}\},\,$$

where n_K runs over all positive integers for each compact subset K of X.

Proposition 4. The inductive limit topology, the compact convergence topology and the uniform topology coincide on $C_c(X,K)$ for each compact subset K of X.

Proof. As the supremum norm topology on $C_c(X)$ is a convex topology such that each i_K is continuous, the inductive limit topology is finer than supremum norm topology on $C_c(X)$, and thus the restriction of inductive limit topology on $C_c(X,K)$ is finer than the supremum norm topology on $C_c(X,K)$.

For any open set V in the inductive limit topology on $C_c(X)$, $V \cap C_c(X, K) = i_K^{-1}(V)$ is an open set in the supremum topology on $C_c(X, K)$, i.e., the restriction of inductive limit topology on $C_c(X, K)$ is coarser than the supremum norm topology on $C_c(X, K)$.

Reference: Bourbaki, Topological Vector Spaces, II.29