

written by Chun Ding on Functor Network original link: https://functor.network/user/1/entry/465

Suppose R is a ring(not necessarily unital nor abelian) and denote all (proper) prime ideals of R by Prim(R). For each subset S of R, define

$$\vee(S) := \{ P \in \operatorname{Prim}(R) | S \subset P \}.$$

Theorem 1. $\{\operatorname{Prim}(R) \setminus \vee(S) | S \subset R\}$ forms a topology of R.

Proof. In fact, (a) \vee {0} = Prim(R), \vee (R) = \emptyset .

 $(b)\cap_{\lambda}\vee(S_{\lambda})=\vee(\cup_{\lambda}S_{\lambda}), S_{\lambda}\subset R$. This can be seen straightforwardly by definition without using any property of an ideal.

$$(c)\vee(S_1)\cup\vee(S_2)=\vee(S_1S_2), S_1, S_2\subset R.$$

If $P \in \vee(S_1) \cup \vee(S_2)$, then $S_1 \subset P$ or $S_2 \subset P$, thus $S_1S_2 \subset P$ since P is an ideal, and hence $\vee(S_1) \cup \vee(S_2) \subset \vee(S_1S_2)$.

Suppose $P \in \bigvee(S_1S_2)$,i.e., $S_1S_2 \subset P$. If $S_1 \nsubseteq P$ and $S_2 \nsubseteq P$, then there exists some $s_1 \in S_1 \backslash P$ and $s_2 \in S_2 \backslash P$, thus $s_1s_2 \notin P$ since the complement of a prime ideal is multiplication closed, a contradiction. Hence $\bigvee(S_1S_2) \subset \bigvee(S_1) \cup \bigvee(S_2)$.

We call this topology $Zariski\ topology$ of Prim(R), and call Prim(R) with Zariski topology the spectrum of R.

We can verify the following properties directly:

(For the empty set \emptyset of Prim(R), define $\cap \emptyset = R$.)

Property 2. For each subset S of Prim(A), $\vee \cap S$ is the closure of S.

Proof. Suppose $S \subset VS$ for some $S \subset R$, then $\cap S \supset \cap VS$, and thus $V \cap S \subset V \cap VS \xrightarrow{see\ here} VS$. Therefore, $V \cap S$ is the smallest closed set in Prim(R) that contains S.

For each semiprime ideal P of R,

$$\cap \vee P = P$$
.

Recall that an ideal P of a ring R is called *semiprime* if P is the intersection of some prime ideals of R.

If R is a unital abelian ring, I is an ideal of R, then

$$\cap \vee I = \sqrt{I}$$
.

where $\sqrt{R} = \{r \in R | r^n \in I \text{ for some positive interger } n\}.$