

Notes on ZFC Axiomatic Language and Formal Proofs

Chun Ding • 19 Dec 2025

The Language of ZFC Symbols

The basic symbols of the language are as follows:

- **Variables:** x_1, x_2, \dots
- **Predicate symbols:**
 - Equality: $=$
 - Membership: \in
- **Logical connectives:**
 - Negation: \neg
 - Implication: \rightarrow
- **Quantifier:**
 - Universal quantifier: \forall

No function symbols or constant symbols are included in the basic language of ZFC.

Formulas

Formulas are defined inductively.

Atomic Formulas

The atomic formulas are:

- $x_1 = x_2$
- $x_1 \in x_2$

Compound Formulas

If φ and ψ are formulas, then the following are also formulas:

- $\neg\varphi$

- $\varphi \rightarrow \psi$
- $\forall x_n \varphi$

There are no other formulas beyond those generated by these rules.

Axioms of Predicate Logic

The deductive system for ZFC is based on a Hilbert-style axiom system for first-order predicate logic. The logical axioms include:

1. $\varphi \rightarrow (\psi \rightarrow \varphi)$
2. $(\varphi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi))$
3. $(\neg\varphi \rightarrow \neg\psi) \rightarrow (\psi \rightarrow \varphi)$
4. $\forall x_i \varphi(x_i) \rightarrow \varphi(t)$, where the term t remains free after substitution for the free occurrences of x_i in φ . In particular, t must not become bound by a quantifier $\forall t$.
5. $\forall x_i (\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \forall x_i \psi)$, provided that x_i does not occur free in φ .

These axioms govern the logical behavior of implication, negation, and universal quantification.

Formal Proofs

Definition of Proof

Let Γ be a set of formulas and φ a formula. We say that φ is **provable from Γ** , written

$$\Gamma \vdash \varphi,$$

if there exists a finite sequence of formulas

$$\varphi_1, \varphi_2, \dots, \varphi_n$$

such that $\varphi_n = \varphi$, and for each index i , one of the following holds:

- φ_i is an axiom of predicate logic; or
- $\varphi_i \in \Gamma$; or
- there exist indices $j, k < i$ such that φ_k is of the form $\varphi_j \rightarrow \varphi_i$ (i.e., φ_i follows from φ_j and $\varphi_j \rightarrow \varphi_i$ by modus ponens); or
- there exists an index $j < i$ such that $\varphi_i = \forall x_n \varphi_j$ (universal generalization).